L11n35

From Knot Atlas
Jump to: navigation, search

L11n34.gif

L11n34

L11n36.gif

L11n36

Contents

L11n35.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n35 at Knotilus!


Link Presentations

[edit Notes on L11n35's Link Presentations]

Planar diagram presentation X6172 X20,7,21,8 X4,21,1,22 X9,14,10,15 X8493 X12,5,13,6 X22,13,5,14 X15,18,16,19 X11,17,12,16 X17,11,18,10 X2,20,3,19
Gauss code {1, -11, 5, -3}, {6, -1, 2, -5, -4, 10, -9, -6, 7, 4, -8, 9, -10, 8, 11, -2, 3, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11n35 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-2) (t(2)-1) (2 t(2)-1)}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial -\frac{10}{q^{9/2}}+\frac{12}{q^{7/2}}-\frac{12}{q^{5/2}}-2 q^{3/2}+\frac{11}{q^{3/2}}+\frac{1}{q^{15/2}}-\frac{4}{q^{13/2}}+\frac{7}{q^{11/2}}+4 \sqrt{q}-\frac{9}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^7 (-z)+3 a^5 z^3+4 a^5 z+a^5 z^{-1} -2 a^3 z^5-6 a^3 z^3-8 a^3 z-3 a^3 z^{-1} +4 a z^3+7 a z+4 a z^{-1} -2 z a^{-1} -2 a^{-1} z^{-1} (db)
Kauffman polynomial -2 a^5 z^9-2 a^3 z^9-5 a^6 z^8-10 a^4 z^8-5 a^2 z^8-4 a^7 z^7-5 a^5 z^7-5 a^3 z^7-4 a z^7-a^8 z^6+12 a^6 z^6+26 a^4 z^6+12 a^2 z^6-z^6+11 a^7 z^5+27 a^5 z^5+26 a^3 z^5+10 a z^5+2 a^8 z^4-4 a^6 z^4-17 a^4 z^4-13 a^2 z^4-2 z^4-7 a^7 z^3-22 a^5 z^3-33 a^3 z^3-21 a z^3-3 z^3 a^{-1} -a^8 z^2-a^2 z^2+a^7 z+6 a^5 z+15 a^3 z+15 a z+5 z a^{-1} +a^6+3 a^4+3 a^2+2-a^5 z^{-1} -3 a^3 z^{-1} -4 a z^{-1} -2 a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
4         22
2        2 -2
0       72 5
-2      64  -2
-4     65   1
-6    66    0
-8   46     -2
-10  36      3
-12 14       -3
-14 3        3
-161         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n34.gif

L11n34

L11n36.gif

L11n36