L11n356

From Knot Atlas
Jump to: navigation, search

L11n355.gif

L11n355

L11n357.gif

L11n357

Contents

L11n356.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n356 at Knotilus!


Link Presentations

[edit Notes on L11n356's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X11,18,12,19 X16,8,17,7 X8,16,9,15 X13,21,14,20 X19,22,20,15 X21,13,22,12 X17,14,18,5 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {5, -4, -9, 3, -7, 6, -8, 7}, {10, -1, 4, -5, 11, -2, -3, 8, -6, 9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n356 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(3)-1) \left(-t(1) t(2)^2+t(1) t(3) t(2)^2-t(3) t(2)^2+t(2)^2+t(1) t(2)-2 t(1) t(3) t(2)+t(3) t(2)-2 t(2)-t(1)+t(1) t(3)-t(3)+1\right)}{\sqrt{t(1)} t(2) t(3)} (db)
Jones polynomial - q^{-6} +4 q^{-5} -6 q^{-4} +q^3+9 q^{-3} -3 q^2-9 q^{-2} +6 q+10 q^{-1} -7 (db)
Signature -2 (db)
HOMFLY-PT polynomial a^2 z^6-a^4 z^4+3 a^2 z^4-2 z^4-a^4 z^2+2 a^2 z^2+z^2 a^{-2} -4 z^2+a^4-2 a^2+ a^{-2} +a^4 z^{-2} -2 a^2 z^{-2} + z^{-2} (db)
Kauffman polynomial a^7 z^3+4 a^6 z^4-2 a^6 z^2+a^5 z^7+2 a^5 z^5+2 a^4 z^8-3 a^4 z^6+8 a^4 z^4-8 a^4 z^2-a^4 z^{-2} +4 a^4+a^3 z^9+2 a^3 z^7-5 a^3 z^5+4 a^3 z^3-5 a^3 z+2 a^3 z^{-1} +5 a^2 z^8-10 a^2 z^6+z^6 a^{-2} +5 a^2 z^4-3 z^4 a^{-2} -6 a^2 z^2+3 z^2 a^{-2} -2 a^2 z^{-2} +6 a^2- a^{-2} +a z^9+4 a z^7+3 z^7 a^{-1} -16 a z^5-9 z^5 a^{-1} +11 a z^3+6 z^3 a^{-1} -5 a z+2 a z^{-1} +3 z^8-6 z^6-2 z^4+3 z^2- z^{-2} +2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-101234χ
7         11
5        2 -2
3       41 3
1      43  -1
-1     63   3
-3    45    1
-5   55     0
-7  25      3
-9 24       -2
-11 3        3
-131         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n355.gif

L11n355

L11n357.gif

L11n357