L11n366

From Knot Atlas
Jump to: navigation, search

L11n365.gif

L11n365

L11n367.gif

L11n367

Contents

L11n366.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n366 at Knotilus!


Link Presentations

[edit Notes on L11n366's Link Presentations]

Planar diagram presentation X6172 X10,4,11,3 X12,8,13,7 X15,17,16,22 X18,10,19,9 X8,18,9,17 X13,21,14,20 X21,15,22,14 X19,5,20,16 X2536 X4,12,1,11
Gauss code {1, -10, 2, -11}, {6, -5, -9, 7, -8, 4}, {10, -1, 3, -6, 5, -2, 11, -3, -7, 8, -4, 9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n366 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (w-1) \left(v^2 w^3-1\right)}{\sqrt{u} v w^2} (db)
Jones polynomial q^9-q^8+2 q^7-2 q^6+3 q^5-2 q^4+3 q^3-q^2+q (db)
Signature 6 (db)
HOMFLY-PT polynomial -z^8 a^{-6} +z^6 a^{-4} -7 z^6 a^{-6} +z^6 a^{-8} +6 z^4 a^{-4} -17 z^4 a^{-6} +6 z^4 a^{-8} +11 z^2 a^{-4} -20 z^2 a^{-6} +10 z^2 a^{-8} -z^2 a^{-10} +7 a^{-4} -12 a^{-6} +6 a^{-8} - a^{-10} + a^{-4} z^{-2} -2 a^{-6} z^{-2} + a^{-8} z^{-2} (db)
Kauffman polynomial  a^{-12} -z a^{-11} +z^4 a^{-10} -5 z^2 a^{-10} +2 a^{-10} +2 z^7 a^{-9} -10 z^5 a^{-9} +11 z^3 a^{-9} -3 z a^{-9} +3 z^8 a^{-8} -18 z^6 a^{-8} +33 z^4 a^{-8} -26 z^2 a^{-8} - a^{-8} z^{-2} +9 a^{-8} +z^9 a^{-7} -3 z^7 a^{-7} -6 z^5 a^{-7} +19 z^3 a^{-7} -12 z a^{-7} +2 a^{-7} z^{-1} +4 z^8 a^{-6} -25 z^6 a^{-6} +49 z^4 a^{-6} -39 z^2 a^{-6} -2 a^{-6} z^{-2} +15 a^{-6} +z^9 a^{-5} -5 z^7 a^{-5} +4 z^5 a^{-5} +8 z^3 a^{-5} -10 z a^{-5} +2 a^{-5} z^{-1} +z^8 a^{-4} -7 z^6 a^{-4} +17 z^4 a^{-4} -18 z^2 a^{-4} - a^{-4} z^{-2} +8 a^{-4} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-10123456χ
19        11
17       220
15      1111
13     22  0
11    111  1
9   12    1
7  21     1
5 13      2
3         0
11        1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=3 i=5 i=7
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{3} {\mathbb Z}^{2}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=6 {\mathbb Z} {\mathbb Z}^{2} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n365.gif

L11n365

L11n367.gif

L11n367