L11n369

From Knot Atlas
Jump to: navigation, search

L11n368.gif

L11n368

L11n370.gif

L11n370

Contents

L11n369.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n369 at Knotilus!


Link Presentations

[edit Notes on L11n369's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X7,14,8,15 X20,16,21,15 X18,11,19,12 X12,17,13,18 X22,20,17,19 X16,22,5,21 X13,8,14,9 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {6, -5, 7, -4, 8, -7}, {10, -1, -3, 9, 11, -2, 5, -6, -9, 3, 4, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n369 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (v-1) (w-1)^3}{\sqrt{u} \sqrt{v} w^{3/2}} (db)
Jones polynomial -q^2+4 q-7+10 q^{-1} -10 q^{-2} +12 q^{-3} -9 q^{-4} +7 q^{-5} -3 q^{-6} + q^{-7} (db)
Signature -2 (db)
HOMFLY-PT polynomial z^2 a^6+a^6 z^{-2} +a^6-2 z^4 a^4-4 z^2 a^4-2 a^4 z^{-2} -4 a^4+z^6 a^2+3 z^4 a^2+4 z^2 a^2+a^2 z^{-2} +3 a^2-z^4-z^2 (db)
Kauffman polynomial a^8 z^4-2 a^8 z^2+a^8+3 a^7 z^5-3 a^7 z^3+a^6 z^8-a^6 z^6+6 a^6 z^4-4 a^6 z^2+a^6 z^{-2} -a^6+a^5 z^9+3 a^5 z^5-3 a^5 z^3+4 a^5 z-2 a^5 z^{-1} +5 a^4 z^8-8 a^4 z^6+6 a^4 z^4+a^4 z^2+2 a^4 z^{-2} -4 a^4+a^3 z^9+6 a^3 z^7-12 a^3 z^5+3 a^3 z^3+4 a^3 z-2 a^3 z^{-1} +4 a^2 z^8-3 a^2 z^6-6 a^2 z^4+5 a^2 z^2+a^2 z^{-2} -3 a^2+6 a z^7-11 a z^5+z^5 a^{-1} +2 a z^3-z^3 a^{-1} +4 z^6-7 z^4+2 z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-10123χ
5         1-1
3        3 3
1       41 -3
-1      63  3
-3     66   0
-5    64    2
-7   36     3
-9  46      -2
-11 15       4
-13 2        -2
-151         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n368.gif

L11n368

L11n370.gif

L11n370