L11n372

From Knot Atlas
Jump to: navigation, search

L11n371.gif

L11n371

L11n373.gif

L11n373

Contents

L11n372.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n372 at Knotilus!


Link Presentations

[edit Notes on L11n372's Link Presentations]

Planar diagram presentation X6172 X3,10,4,11 X7,19,8,18 X15,17,16,22 X9,20,10,21 X13,9,14,8 X17,15,18,14 X21,5,22,16 X19,12,20,13 X2536 X11,4,12,1
Gauss code {1, -10, -2, 11}, {-7, 3, -9, 5, -8, 4}, {10, -1, -3, 6, -5, 2, -11, 9, -6, 7, -4, 8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n372 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(3)-1) \left(-t(1) t(3)^3+t(1) t(2) t(3)^3+t(1) t(2)^2 t(3)^2+t(1) t(3)^2-2 t(1) t(2) t(3)^2-t(3)^2-t(1) t(2)^2 t(3)+t(2)^2 t(3)-2 t(2) t(3)+t(3)-t(2)^2+t(2)\right)}{\sqrt{t(1)} t(2) t(3)^2} (db)
Jones polynomial -q^4+3 q^3-5 q^2+8 q-8+10 q^{-1} -8 q^{-2} +7 q^{-3} -4 q^{-4} +2 q^{-5} (db)
Signature -2 (db)
HOMFLY-PT polynomial a^6-a^4 z^4-3 a^4 z^2+a^4 z^{-2} -a^4+a^2 z^6+3 a^2 z^4-z^4 a^{-2} +a^2 z^2-2 a^2 z^{-2} -2 z^2 a^{-2} -2 a^2+z^6+3 z^4+2 z^2+ z^{-2} +2 (db)
Kauffman polynomial 3 a^6 z^2-a^6+a^5 z^5+3 a^5 z^3-a^5 z+3 a^4 z^6-a^4 z^4-3 a^4 z^2-a^4 z^{-2} +4 a^4+6 a^3 z^7+z^7 a^{-3} -16 a^3 z^5-4 z^5 a^{-3} +17 a^3 z^3+5 z^3 a^{-3} -10 a^3 z-2 z a^{-3} +2 a^3 z^{-1} +6 a^2 z^8+3 z^8 a^{-2} -20 a^2 z^6-13 z^6 a^{-2} +27 a^2 z^4+17 z^4 a^{-2} -26 a^2 z^2-8 z^2 a^{-2} -2 a^2 z^{-2} +12 a^2+2 a^{-2} +2 a z^9+2 z^9 a^{-1} +2 a z^7-3 z^7 a^{-1} -25 a z^5-12 z^5 a^{-1} +30 a z^3+21 z^3 a^{-1} -14 a z-7 z a^{-1} +2 a z^{-1} +9 z^8-36 z^6+45 z^4-28 z^2- z^{-2} +10 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-1012345χ
9         1-1
7        2 2
5       31 -2
3      52  3
1     44   0
-1    64    2
-3   35     2
-5  45      -1
-7 14       3
-913        -2
-112         2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-4 {\mathbb Z}^{2} {\mathbb Z}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n371.gif

L11n371

L11n373.gif

L11n373