L11n384

From Knot Atlas
Jump to: navigation, search

L11n383.gif

L11n383

L11n385.gif

L11n385

Contents

L11n384.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n384 at Knotilus!


Link Presentations

[edit Notes on L11n384's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X4,15,1,16 X10,6,11,5 X8493 X22,18,19,17 X11,20,12,21 X19,12,20,13 X18,22,5,21 X16,10,17,9 X2,14,3,13
Gauss code {1, -11, 5, -3}, {-8, 7, 9, -6}, {4, -1, 2, -5, 10, -4, -7, 8, 11, -2, 3, -10, 6, -9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n384 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-1) (t(3)-1)^3}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} (db)
Jones polynomial q^6-3 q^5+5 q^4-8 q^3+11 q^2-10 q+11-7 q^{-1} +6 q^{-2} -2 q^{-3} (db)
Signature 0 (db)
HOMFLY-PT polynomial -z^6 a^{-2} -4 z^4 a^{-2} +z^4 a^{-4} +3 z^4-2 a^2 z^2-7 z^2 a^{-2} +2 z^2 a^{-4} +7 z^2-a^2-3 a^{-2} + a^{-4} +3+a^2 z^{-2} + a^{-2} z^{-2} -2 z^{-2} (db)
Kauffman polynomial 2 z^9 a^{-1} +2 z^9 a^{-3} +9 z^8 a^{-2} +4 z^8 a^{-4} +5 z^8+4 a z^7+z^7 a^{-1} +3 z^7 a^{-5} +a^2 z^6-31 z^6 a^{-2} -13 z^6 a^{-4} +z^6 a^{-6} -16 z^6-7 a z^5-13 z^5 a^{-1} -16 z^5 a^{-3} -10 z^5 a^{-5} +6 a^2 z^4+41 z^4 a^{-2} +12 z^4 a^{-4} -3 z^4 a^{-6} +32 z^4+3 a^3 z^3+10 a z^3+20 z^3 a^{-1} +21 z^3 a^{-3} +8 z^3 a^{-5} -9 a^2 z^2-26 z^2 a^{-2} -6 z^2 a^{-4} +z^2 a^{-6} -28 z^2-a^3 z-5 a z-9 z a^{-1} -7 z a^{-3} -2 z a^{-5} +2 a^2+6 a^{-2} +2 a^{-4} +7-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-3-2-10123456χ
13         11
11        2 -2
9       31 2
7      52  -3
5     63   3
3    45    1
1   76     1
-1  48      4
-3 23       -1
-5 4        4
-72         -2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-3 {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n383.gif

L11n383

L11n385.gif

L11n385