L11n388

From Knot Atlas
Jump to: navigation, search

L11n387.gif

L11n387

L11n389.gif

L11n389

Contents

L11n388.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n388 at Knotilus!


Link Presentations

[edit Notes on L11n388's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X4,15,1,16 X5,12,6,13 X8493 X22,11,19,12 X18,22,5,21 X20,10,21,9 X10,17,11,18 X16,19,17,20 X2,14,3,13
Gauss code {1, -11, 5, -3}, {10, -8, 7, -6}, {-4, -1, 2, -5, 8, -9, 6, 4, 11, -2, 3, -10, 9, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation L11n388 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (v-1) (w-1)^3}{\sqrt{u} \sqrt{v} w^{3/2}} (db)
Jones polynomial -3 q^{-6} +6 q^{-5} -9 q^{-4} +12 q^{-3} -q^2-10 q^{-2} +5 q+11 q^{-1} -7 (db)
Signature -2 (db)
HOMFLY-PT polynomial -a^6 z^{-2} -2 a^6-a^4 z^4+2 a^4 z^2+4 a^4 z^{-2} +7 a^4+a^2 z^6+2 a^2 z^4-2 a^2 z^2-5 a^2 z^{-2} -8 a^2-z^4+2 z^{-2} +3 (db)
Kauffman polynomial 3 a^4 z^8+3 a^2 z^8+6 a^5 z^7+13 a^3 z^7+7 a z^7+3 a^6 z^6+3 a^4 z^6+5 a^2 z^6+5 z^6-13 a^5 z^5-27 a^3 z^5-13 a z^5+z^5 a^{-1} -8 a^4 z^4-16 a^2 z^4-8 z^4+6 a^7 z^3+24 a^5 z^3+24 a^3 z^3+6 a z^3-3 a^4 z^2-3 a^2 z^2-6 a^7 z-19 a^5 z-21 a^3 z-8 a z+3 a^6+10 a^4+11 a^2+5+a^7 z^{-1} +5 a^5 z^{-1} +9 a^3 z^{-1} +5 a z^{-1} -a^6 z^{-2} -4 a^4 z^{-2} -5 a^2 z^{-2} -2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123χ
5        1-1
3       4 4
1      31 -2
-1     84  4
-3    67   1
-5   64    2
-7  36     3
-9 36      -3
-11 3       3
-133        -3
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-5 {\mathbb Z}^{3}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{8}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n387.gif

L11n387

L11n389.gif

L11n389