L11n395

From Knot Atlas
Jump to: navigation, search

L11n394.gif

L11n394

L11n396.gif

L11n396

Contents

L11n395.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n395 at Knotilus!


Link Presentations

[edit Notes on L11n395's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X15,1,16,4 X9,22,10,19 X3849 X21,17,22,16 X11,5,12,18 X5,21,6,20 X17,11,18,10 X19,12,20,13 X2,14,3,13
Gauss code {1, -11, -5, 3}, {-10, 8, -6, 4}, {-8, -1, 2, 5, -4, 9, -7, 10, 11, -2, -3, 6, -9, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L11n395 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (v-1) (w-1) \left(w^2-w+1\right)}{\sqrt{u} \sqrt{v} w^{3/2}} (db)
Jones polynomial q^5-4 q^4- q^{-4} +6 q^3+3 q^{-3} -6 q^2-4 q^{-2} +9 q+7 q^{-1} -7 (db)
Signature 2 (db)
HOMFLY-PT polynomial z^6-a^2 z^4-2 z^4 a^{-2} +4 z^4-2 a^2 z^2-4 z^2 a^{-2} +z^2 a^{-4} +5 z^2+a^2 z^{-2} + a^{-2} z^{-2} -2 z^{-2} (db)
Kauffman polynomial 2 a z^9+2 z^9 a^{-1} +3 a^2 z^8+5 z^8 a^{-2} +8 z^8+a^3 z^7-5 a z^7-z^7 a^{-1} +5 z^7 a^{-3} -14 a^2 z^6-18 z^6 a^{-2} +2 z^6 a^{-4} -34 z^6-4 a^3 z^5-5 a z^5-17 z^5 a^{-1} -16 z^5 a^{-3} +19 a^2 z^4+22 z^4 a^{-2} -z^4 a^{-4} +42 z^4+4 a^3 z^3+13 a z^3+22 z^3 a^{-1} +17 z^3 a^{-3} +4 z^3 a^{-5} -8 a^2 z^2-13 z^2 a^{-2} -z^2 a^{-4} +z^2 a^{-6} -19 z^2-a^3 z-4 a z-6 z a^{-1} -4 z a^{-3} -z a^{-5} +1-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-101234χ
11         11
9        3 -3
7       42 2
5      33  0
3     641  3
1    57    2
-1   231    0
-3  25      3
-5 12       -1
-7 2        2
-91         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1 i=3
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z} {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z} {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n394.gif

L11n394

L11n396.gif

L11n396