L11n397

From Knot Atlas
Jump to: navigation, search

L11n396.gif

L11n396

L11n398.gif

L11n398

Contents

L11n397.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n397 at Knotilus!


Link Presentations

[edit Notes on L11n397's Link Presentations]

Planar diagram presentation X6172 X10,4,11,3 X12,8,13,7 X16,10,17,9 X17,22,18,19 X13,20,14,21 X19,14,20,15 X21,18,22,5 X8,16,9,15 X2536 X4,12,1,11
Gauss code {1, -10, 2, -11}, {-7, 6, -8, 5}, {10, -1, 3, -9, 4, -2, 11, -3, -6, 7, 9, -4, -5, 8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11n397 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (w-1)^2 (w+1) \left(v+w^2\right)}{\sqrt{u} \sqrt{v} w^{5/2}} (db)
Jones polynomial -q^5+2 q^4-2 q^3+q^2-q+1+2 q^{-1} - q^{-2} +3 q^{-3} - q^{-4} + q^{-5} (db)
Signature 1 (db)
HOMFLY-PT polynomial z^6-2 a^2 z^4+6 z^4+a^4 z^2-9 a^2 z^2-2 z^2 a^{-2} -z^2 a^{-4} +11 z^2+3 a^4-11 a^2-3 a^{-2} +11+2 a^4 z^{-2} -5 a^2 z^{-2} - a^{-2} z^{-2} +4 z^{-2} (db)
Kauffman polynomial a^3 z^9+a z^9+a^4 z^8+4 a^2 z^8+3 z^8-5 a^3 z^7-4 a z^7+2 z^7 a^{-1} +z^7 a^{-3} -7 a^4 z^6-27 a^2 z^6+2 z^6 a^{-4} -22 z^6+3 a^3 z^5-7 a z^5-15 z^5 a^{-1} -4 z^5 a^{-3} +z^5 a^{-5} +17 a^4 z^4+56 a^2 z^4-7 z^4 a^{-4} +46 z^4+11 a^3 z^3+32 a z^3+27 z^3 a^{-1} +3 z^3 a^{-3} -3 z^3 a^{-5} -19 a^4 z^2-49 a^2 z^2-5 z^2 a^{-2} +3 z^2 a^{-4} -38 z^2-15 a^3 z-29 a z-17 z a^{-1} -2 z a^{-3} +z a^{-5} +10 a^4+22 a^2+4 a^{-2} +17+5 a^3 z^{-1} +9 a z^{-1} +5 a^{-1} z^{-1} + a^{-3} z^{-1} -2 a^4 z^{-2} -5 a^2 z^{-2} - a^{-2} z^{-2} -4 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
11           1-1
9          1 1
7         11 0
5       221  -1
3      121   0
1     242    0
-1    124     3
-3   12       1
-5  211       2
-7 13         2
-9            0
-111           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1 i=3
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{3} {\mathbb Z}^{2}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{4} {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n396.gif

L11n396

L11n398.gif

L11n398