L11n399

From Knot Atlas
Jump to: navigation, search

L11n398.gif

L11n398

L11n400.gif

L11n400

Contents

L11n399.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n399 at Knotilus!


Link Presentations

[edit Notes on L11n399's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X22,16,19,15 X7,20,8,21 X19,8,20,9 X13,18,14,5 X11,14,12,15 X17,12,18,13 X16,22,17,21 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {-5, 4, 9, -3}, {10, -1, -4, 5, 11, -2, -7, 8, -6, 7, 3, -9, -8, 6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n399 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(2)-1) (t(3)-1) \left(t(1) t(3)^2-1\right)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} (db)
Jones polynomial 1-2 q^{-1} +4 q^{-2} -3 q^{-3} +4 q^{-4} -2 q^{-5} +3 q^{-6} - q^{-8} + q^{-9} - q^{-10} (db)
Signature -4 (db)
HOMFLY-PT polynomial -a^{10} z^{-2} -a^{10}+2 a^8 z^2+4 a^8 z^{-2} +5 a^8-2 a^6 z^2-5 a^6 z^{-2} -7 a^6-a^4 z^6-4 a^4 z^4-3 a^4 z^2+2 a^4 z^{-2} +a^4+a^2 z^4+3 a^2 z^2+2 a^2 (db)
Kauffman polynomial a^{11} z^7-6 a^{11} z^5+10 a^{11} z^3-6 a^{11} z+a^{11} z^{-1} +a^{10} z^8-6 a^{10} z^6+9 a^{10} z^4-6 a^{10} z^2-a^{10} z^{-2} +4 a^{10}+2 a^9 z^7-16 a^9 z^5+33 a^9 z^3-22 a^9 z+5 a^9 z^{-1} +a^8 z^8-9 a^8 z^6+22 a^8 z^4-22 a^8 z^2-4 a^8 z^{-2} +15 a^8+2 a^7 z^7-15 a^7 z^5+34 a^7 z^3-30 a^7 z+9 a^7 z^{-1} +a^6 z^8-5 a^6 z^6+11 a^6 z^4-19 a^6 z^2-5 a^6 z^{-2} +16 a^6+3 a^5 z^7-12 a^5 z^5+15 a^5 z^3-13 a^5 z+5 a^5 z^{-1} +a^4 z^8-a^4 z^6-6 a^4 z^4+2 a^4 z^2-2 a^4 z^{-2} +4 a^4+2 a^3 z^7-7 a^3 z^5+4 a^3 z^3+a^3 z+a^2 z^6-4 a^2 z^4+5 a^2 z^2-2 a^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-1012χ
1           11
-1          1 -1
-3         31 2
-5        23  1
-7      131   1
-9     112    2
-11    153     1
-13   1 2      3
-15   12       -1
-17 11         0
-19            0
-211           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-5 i=-3 i=-1
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{2} {\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{5} {\mathbb Z}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n398.gif

L11n398

L11n400.gif

L11n400