L11n403

From Knot Atlas
Jump to: navigation, search

L11n402.gif

L11n402

L11n404.gif

L11n404

Contents

L11n403.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n403 at Knotilus!


Link Presentations

[edit Notes on L11n403's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X11,17,12,16 X7,20,8,21 X19,8,20,9 X21,15,22,14 X15,19,16,22 X13,5,14,18 X17,13,18,12 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {-5, 4, -6, 7}, {10, -1, -4, 5, 11, -2, -3, 9, -8, 6, -7, 3, -9, 8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n403 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(2)-1) (t(3)-1) \left(t(3)^4-t(1)\right)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{5/2}} (db)
Jones polynomial -q^5+ q^{-5} +q^4- q^{-4} +4 q^{-3} -q^2-3 q^{-2} +2 q+4 q^{-1} -2 (db)
Signature 2 (db)
HOMFLY-PT polynomial z^6-2 a^2 z^4+5 z^4+a^4 z^2-8 a^2 z^2-z^2 a^{-4} +8 z^2+3 a^4-10 a^2- a^{-4} +8+2 a^4 z^{-2} -5 a^2 z^{-2} - a^{-2} z^{-2} +4 z^{-2} (db)
Kauffman polynomial z^5 a^{-5} -4 z^3 a^{-5} +2 z a^{-5} +a^4 z^8-7 a^4 z^6+z^6 a^{-4} +18 a^4 z^4-5 z^4 a^{-4} -21 a^4 z^2+4 z^2 a^{-4} -2 a^4 z^{-2} +11 a^4- a^{-4} +a^3 z^9-4 a^3 z^7-a^3 z^5-z^5 a^{-3} +17 a^3 z^3+z^3 a^{-3} -18 a^3 z-2 z a^{-3} +5 a^3 z^{-1} + a^{-3} z^{-1} +5 a^2 z^8-30 a^2 z^6+58 a^2 z^4-3 z^4 a^{-2} -51 a^2 z^2+z^2 a^{-2} -5 a^2 z^{-2} - a^{-2} z^{-2} +24 a^2+2 a^{-2} +a z^9+4 z^7 a^{-1} -24 a z^5-25 z^5 a^{-1} +52 a z^3+40 z^3 a^{-1} -37 a z-23 z a^{-1} +9 a z^{-1} +5 a^{-1} z^{-1} +4 z^8-24 z^6+42 z^4-33 z^2-4 z^{-2} +17 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
11           1-1
9            0
7        111 1
5       21   -1
3      221   1
1     341    0
-1    123     2
-3   23       1
-5  21        1
-7 14         3
-9            0
-111           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1 i=3
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{4} {\mathbb Z}^{2}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{3} {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=1 {\mathbb Z} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n402.gif

L11n402

L11n404.gif

L11n404