L11n420

From Knot Atlas
Jump to: navigation, search

L11n419.gif

L11n419

L11n421.gif

L11n421

Contents

L11n420.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n420 at Knotilus!


Link Presentations

[edit Notes on L11n420's Link Presentations]

Planar diagram presentation X8192 X7,16,8,17 X3,10,4,11 X17,2,18,3 X18,9,19,10 X11,20,12,21 X14,6,15,5 X22,15,13,16 X6,14,1,13 X4,19,5,20 X21,12,22,7
Gauss code {1, 4, -3, -10, 7, -9}, {-2, -1, 5, 3, -6, 11}, {9, -7, 8, 2, -4, -5, 10, 6, -11, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11n420 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u^2 v^2 w^3-u^2 v^2 w^2-u v^2 w^3+u v w^2-u v w+u+w-1}{u v w^{3/2}} (db)
Jones polynomial  q^{-7} +2 q^{-5} - q^{-4} +2 q^{-3} - q^{-2} + q^{-1} (db)
Signature -6 (db)
HOMFLY-PT polynomial a^{10} \left(-z^2\right)-a^{10}+a^8 z^6+6 a^8 z^4+9 a^8 z^2+a^8 z^{-2} +4 a^8-a^6 z^8-7 a^6 z^6-16 a^6 z^4-16 a^6 z^2-2 a^6 z^{-2} -8 a^6+a^4 z^6+6 a^4 z^4+10 a^4 z^2+a^4 z^{-2} +5 a^4 (db)
Kauffman polynomial a^{11} (-z)-2 a^{10} z^2+a^{10}+a^9 z^7-6 a^9 z^5+8 a^9 z^3-3 a^9 z+2 a^8 z^8-13 a^8 z^6+25 a^8 z^4-20 a^8 z^2-a^8 z^{-2} +8 a^8+a^7 z^9-5 a^7 z^7+3 a^7 z^5+8 a^7 z^3-8 a^7 z+2 a^7 z^{-1} +3 a^6 z^8-20 a^6 z^6+41 a^6 z^4-33 a^6 z^2-2 a^6 z^{-2} +12 a^6+a^5 z^9-6 a^5 z^7+9 a^5 z^5-6 a^5 z+2 a^5 z^{-1} +a^4 z^8-7 a^4 z^6+16 a^4 z^4-15 a^4 z^2-a^4 z^{-2} +6 a^4 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012χ
-1        11
-3         0
-5      21 1
-7    111  1
-9    21   1
-11  211    2
-13  21     1
-15111      1
-1711       0
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-7 i=-5 i=-3
r=-6 {\mathbb Z} {\mathbb Z}
r=-5 {\mathbb Z} {\mathbb Z}
r=-4 {\mathbb Z} {\mathbb Z}^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2} {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n419.gif

L11n419

L11n421.gif

L11n421