From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n429 at Knotilus!

Link Presentations

[edit Notes on L11n429's Link Presentations]

Planar diagram presentation X8192 X9,20,10,21 X14,5,15,6 X12,14,7,13 X16,8,17,7 X22,18,13,17 X3,10,4,11 X18,11,19,12 X6,15,1,16 X19,4,20,5 X2,21,3,22
Gauss code {1, -11, -7, 10, 3, -9}, {5, -1, -2, 7, 8, -4}, {4, -3, 9, -5, 6, -8, -10, 2, 11, -6}
A Braid Representative
A Morse Link Presentation L11n429 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u^2 v^2 w^3-2 u^2 v^2 w^2+u^2 v^2 w-u^2 v w^3+2 u^2 v w^2+u v^2 w^2-u v^2 w-u v w^2+u v w+u w^2-u w-2 v w+v-w^2+2 w-1}{u v w^{3/2}} (db)
Jones polynomial -q+3-4 q^{-1} +6 q^{-2} -6 q^{-3} +7 q^{-4} -5 q^{-5} +5 q^{-6} -2 q^{-7} + q^{-8} (db)
Signature -4 (db)
HOMFLY-PT polynomial a^8 z^2+a^8 z^{-2} +a^8-a^6 z^6-5 a^6 z^4-7 a^6 z^2-2 a^6 z^{-2} -5 a^6+a^4 z^8+6 a^4 z^6+12 a^4 z^4+11 a^4 z^2+a^4 z^{-2} +4 a^4-a^2 z^6-4 a^2 z^4-3 a^2 z^2 (db)
Kauffman polynomial a^{10} z^2+2 a^9 z^3+5 a^8 z^4-9 a^8 z^2-a^8 z^{-2} +6 a^8+2 a^7 z^7-5 a^7 z^5+6 a^7 z^3-6 a^7 z+2 a^7 z^{-1} +4 a^6 z^8-18 a^6 z^6+31 a^6 z^4-29 a^6 z^2-2 a^6 z^{-2} +12 a^6+2 a^5 z^9-5 a^5 z^7-3 a^5 z^5+10 a^5 z^3-8 a^5 z+2 a^5 z^{-1} +7 a^4 z^8-32 a^4 z^6+44 a^4 z^4-26 a^4 z^2-a^4 z^{-2} +8 a^4+2 a^3 z^9-6 a^3 z^7-2 a^3 z^5+10 a^3 z^3-3 a^3 z+3 a^2 z^8-14 a^2 z^6+18 a^2 z^4-7 a^2 z^2+a^2+a z^7-4 a z^5+4 a z^3-a z (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
3         1-1
1        2 2
-1       21 -1
-3      42  2
-5     33   0
-7    43    1
-9   24     2
-11  33      0
-13  3       3
-1512        -1
-171         1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-5 i=-3
r=-6 {\mathbb Z} {\mathbb Z}
r=-5 {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.