L11n43

From Knot Atlas
Jump to: navigation, search

L11n42.gif

L11n42

L11n44.gif

L11n44

Contents

L11n43.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n43 at Knotilus!


Link Presentations

[edit Notes on L11n43's Link Presentations]

Planar diagram presentation X6172 X12,7,13,8 X4,13,1,14 X9,18,10,19 X8493 X5,14,6,15 X15,22,16,5 X17,20,18,21 X21,16,22,17 X19,10,20,11 X2,12,3,11
Gauss code {1, -11, 5, -3}, {-6, -1, 2, -5, -4, 10, 11, -2, 3, 6, -7, 9, -8, 4, -10, 8, -9, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11n43 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) \left(2 t(2)^2-3 t(2)+2\right)}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial -\sqrt{q}+\frac{2}{\sqrt{q}}-\frac{5}{q^{3/2}}+\frac{7}{q^{5/2}}-\frac{10}{q^{7/2}}+\frac{9}{q^{9/2}}-\frac{9}{q^{11/2}}+\frac{7}{q^{13/2}}-\frac{4}{q^{15/2}}+\frac{2}{q^{17/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial -a^9 z^{-1} -z^3 a^7+z a^7+2 a^7 z^{-1} +z^5 a^5+z^3 a^5-z a^5-a^5 z^{-1} +z^5 a^3+2 z^3 a^3+2 z a^3+a^3 z^{-1} -z^3 a-2 z a-a z^{-1} (db)
Kauffman polynomial -3 z^4 a^{10}+6 z^2 a^{10}-3 a^{10}-z^7 a^9-z^5 a^9+3 z^3 a^9-z a^9+a^9 z^{-1} -2 z^8 a^8+5 z^6 a^8-14 z^4 a^8+18 z^2 a^8-7 a^8-z^9 a^7-3 z^5 a^7+5 z^3 a^7-4 z a^7+2 a^7 z^{-1} -4 z^8 a^6+8 z^6 a^6-14 z^4 a^6+13 z^2 a^6-4 a^6-z^9 a^5-z^7 a^5-z^5 a^5+6 z^3 a^5-5 z a^5+a^5 z^{-1} -2 z^8 a^4+z^6 a^4+z^4 a^4-2 z^7 a^3+7 z^3 a^3-5 z a^3+a^3 z^{-1} -2 z^6 a^2+4 z^4 a^2-z^2 a^2-a^2-z^5 a+3 z^3 a-3 z a+a z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
2         11
0        1 -1
-2       41 3
-4      53  -2
-6     52   3
-8    45    1
-10   55     0
-12  24      2
-14 25       -3
-16 2        2
-182         -2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-7 {\mathbb Z}^{2}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n42.gif

L11n42

L11n44.gif

L11n44