L11n450

From Knot Atlas
Jump to: navigation, search

L11n449.gif

L11n449

L11n451.gif

L11n451

Contents

L11n450.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n450 at Knotilus!


Link Presentations

[edit Notes on L11n450's Link Presentations]

Planar diagram presentation X6172 X3,11,4,10 X11,20,12,21 X13,19,14,22 X21,18,22,9 X17,13,18,12 X15,8,16,5 X7,14,8,15 X19,17,20,16 X2536 X9,1,10,4
Gauss code {1, -10, -2, 11}, {10, -1, -8, 7}, {-9, 3, -5, 4}, {-11, 2, -3, 6, -4, 8, -7, 9, -6, 5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation L11n450 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(w-1) (x-1)^2 (u v x+u (-v)+u-v x+x-1)}{\sqrt{u} \sqrt{v} \sqrt{w} x^{3/2}} (db)
Jones polynomial q^{9/2}-3 q^{7/2}+7 q^{5/2}-13 q^{3/2}+14 \sqrt{q}-\frac{18}{\sqrt{q}}+\frac{14}{q^{3/2}}-\frac{14}{q^{5/2}}+\frac{8}{q^{7/2}}-\frac{4}{q^{9/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a z^7-a^3 z^5+4 a z^5-2 z^5 a^{-1} -3 a^3 z^3+8 a z^3-6 z^3 a^{-1} +z^3 a^{-3} +a^5 z-7 a^3 z+12 a z-8 z a^{-1} +2 z a^{-3} +2 a^5 z^{-1} -8 a^3 z^{-1} +11 a z^{-1} -6 a^{-1} z^{-1} + a^{-3} z^{-1} +a^5 z^{-3} -3 a^3 z^{-3} +3 a z^{-3} - a^{-1} z^{-3} (db)
Kauffman polynomial 10 a^5 z^3-a^5 z^{-3} -11 a^5 z+5 a^5 z^{-1} +6 a^4 z^6+z^6 a^{-4} -4 a^4 z^4-3 z^4 a^{-4} +9 a^4 z^2+3 z^2 a^{-4} +3 a^4 z^{-2} -9 a^4- a^{-4} +13 a^3 z^7+3 z^7 a^{-3} -31 a^3 z^5-8 z^5 a^{-3} +44 a^3 z^3+9 z^3 a^{-3} -3 a^3 z^{-3} -34 a^3 z-6 z a^{-3} +14 a^3 z^{-1} +2 a^{-3} z^{-1} +9 a^2 z^8+4 z^8 a^{-2} -9 a^2 z^6-5 z^6 a^{-2} -9 a^2 z^4-7 z^4 a^{-2} +24 a^2 z^2+14 z^2 a^{-2} +6 a^2 z^{-2} -21 a^2-6 a^{-2} +2 a z^9+2 z^9 a^{-1} +20 a z^7+10 z^7 a^{-1} -62 a z^5-39 z^5 a^{-1} +67 a z^3+42 z^3 a^{-1} -3 a z^{-3} - a^{-1} z^{-3} -44 a z-27 z a^{-1} +18 a z^{-1} +11 a^{-1} z^{-1} +13 z^8-21 z^6-9 z^4+26 z^2+3 z^{-2} -18 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-1012345χ
10         1-1
8        2 2
6       51 -4
4      82  6
2     65   -1
0    128    4
-2   812     4
-4  66      0
-6 28       6
-826        -4
-104         4
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-4 {\mathbb Z}^{4} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=0 {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{12}
r=1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{8}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n449.gif

L11n449

L11n451.gif

L11n451