L11n49

From Knot Atlas
Jump to: navigation, search

L11n48.gif

L11n48

L11n50.gif

L11n50

Contents

L11n49.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n49 at Knotilus!


Link Presentations

[edit Notes on L11n49's Link Presentations]

Planar diagram presentation X6172 X18,7,19,8 X4,19,1,20 X5,14,6,15 X8493 X9,16,10,17 X15,10,16,11 X11,20,12,21 X13,22,14,5 X21,12,22,13 X2,18,3,17
Gauss code {1, -11, 5, -3}, {-4, -1, 2, -5, -6, 7, -8, 10, -9, 4, -7, 6, 11, -2, 3, 8, -10, 9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n49 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (v-1) \left(v^4-v^3+v^2-v+1\right)}{\sqrt{u} v^{5/2}} (db)
Jones polynomial -\frac{7}{q^{9/2}}+\frac{4}{q^{7/2}}-\frac{4}{q^{5/2}}+\frac{2}{q^{3/2}}+\frac{2}{q^{19/2}}-\frac{3}{q^{17/2}}+\frac{5}{q^{15/2}}-\frac{6}{q^{13/2}}+\frac{6}{q^{11/2}}-\frac{1}{\sqrt{q}} (db)
Signature -5 (db)
HOMFLY-PT polynomial a^9 (-z)-2 a^9 z^{-1} -a^7 z^5-2 a^7 z^3+3 a^7 z+4 a^7 z^{-1} +a^5 z^7+5 a^5 z^5+7 a^5 z^3+2 a^5 z-a^5 z^{-1} -a^3 z^5-4 a^3 z^3-4 a^3 z-a^3 z^{-1} (db)
Kauffman polynomial -3 z^2 a^{12}+2 a^{12}-z^5 a^{11}-z^3 a^{11}-z a^{11}-2 z^6 a^{10}+2 z^4 a^{10}-3 z^2 a^{10}+a^{10}-2 z^7 a^9+z^5 a^9+4 z^3 a^9-4 z a^9+2 a^9 z^{-1} -2 z^8 a^8+4 z^6 a^8-5 z^4 a^8+12 z^2 a^8-6 a^8-z^9 a^7+6 z^5 a^7-z^3 a^7-5 z a^7+4 a^7 z^{-1} -4 z^8 a^6+15 z^6 a^6-17 z^4 a^6+12 z^2 a^6-5 a^6-z^9 a^5+z^7 a^5+9 z^5 a^5-14 z^3 a^5+3 z a^5+a^5 z^{-1} -2 z^8 a^4+9 z^6 a^4-10 z^4 a^4+a^4-z^7 a^3+5 z^5 a^3-8 z^3 a^3+5 z a^3-a^3 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
0         11
-2        1 -1
-4       31 2
-6      33  0
-8     41   3
-10    23    1
-12   44     0
-14  12      1
-16 24       -2
-18 1        1
-202         -2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-7 {\mathbb Z}^{2}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n48.gif

L11n48

L11n50.gif

L11n50