L11n52

From Knot Atlas
Jump to: navigation, search

L11n51.gif

L11n51

L11n53.gif

L11n53

Contents

L11n52.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n52 at Knotilus!


Link Presentations

[edit Notes on L11n52's Link Presentations]

Planar diagram presentation X6172 X10,4,11,3 X12,8,13,7 X13,18,14,19 X16,9,17,10 X8,17,9,18 X19,22,20,5 X15,21,16,20 X21,15,22,14 X2536 X4,12,1,11
Gauss code {1, -10, 2, -11}, {10, -1, 3, -6, 5, -2, 11, -3, -4, 9, -8, -5, 6, 4, -7, 8, -9, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n52 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1)^3}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial -2 q^{5/2}+3 q^{3/2}-5 \sqrt{q}+\frac{5}{\sqrt{q}}-\frac{5}{q^{3/2}}+\frac{5}{q^{5/2}}-\frac{4}{q^{7/2}}+\frac{2}{q^{9/2}}-\frac{1}{q^{11/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial z a^5+a^5 z^{-1} -2 z^3 a^3-4 z a^3-2 a^3 z^{-1} +z^5 a+3 z^3 a+3 z a+a z^{-1} -z^3 a^{-1} + a^{-1} z^{-1} - a^{-3} z^{-1} (db)
Kauffman polynomial a^5 z^7-5 a^5 z^5+8 a^5 z^3-5 a^5 z+a^5 z^{-1} +2 a^4 z^8-9 a^4 z^6+11 a^4 z^4-5 a^4 z^2+a^4+a^3 z^9-16 a^3 z^5+27 a^3 z^3-15 a^3 z+z a^{-3} +2 a^3 z^{-1} - a^{-3} z^{-1} +5 a^2 z^8-22 a^2 z^6+26 a^2 z^4+z^4 a^{-2} -12 a^2 z^2-z^2 a^{-2} +3 a^2+ a^{-2} +a z^9+a z^7+2 z^7 a^{-1} -19 a z^5-8 z^5 a^{-1} +28 a z^3+9 z^3 a^{-1} -12 a z-z a^{-1} +a z^{-1} - a^{-1} z^{-1} +3 z^8-13 z^6+16 z^4-8 z^2+2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012χ
6        22
4       1 -1
2      42 2
0     33  0
-2    231  0
-4   33    0
-6  12     -1
-8 13      2
-10 1       -1
-121        1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0 i=2
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z} {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n51.gif

L11n51

L11n53.gif

L11n53