L11n59

From Knot Atlas
Jump to: navigation, search

L11n58.gif

L11n58

L11n60.gif

L11n60

Contents

L11n59.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n59 at Knotilus!


Link Presentations

[edit Notes on L11n59's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X14,8,15,7 X11,19,12,18 X19,5,20,22 X15,21,16,20 X21,17,22,16 X17,13,18,12 X8,14,9,13 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, 3, -9, 11, -2, -4, 8, 9, -3, -6, 7, -8, 4, -5, 6, -7, 5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n59 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(2)^5-t(1) t(2)^4+t(2)^4+4 t(1) t(2)^3-4 t(2)^3-4 t(1) t(2)^2+4 t(2)^2+t(1) t(2)-t(2)+t(1)}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial -6 q^{9/2}+7 q^{7/2}-6 q^{5/2}-\frac{1}{q^{5/2}}+5 q^{3/2}+q^{15/2}-3 q^{13/2}+5 q^{11/2}-4 \sqrt{q} (db)
Signature 1 (db)
HOMFLY-PT polynomial -z^5 a^{-1} +z^5 a^{-3} +a z^3-7 z^3 a^{-1} +3 z^3 a^{-3} -2 z^3 a^{-5} +4 a z-10 z a^{-1} +5 z a^{-3} -2 z a^{-5} +z a^{-7} +3 a z^{-1} -5 a^{-1} z^{-1} +2 a^{-3} z^{-1} (db)
Kauffman polynomial z^6 a^{-8} -3 z^4 a^{-8} +2 z^2 a^{-8} +3 z^7 a^{-7} -10 z^5 a^{-7} +7 z^3 a^{-7} -z a^{-7} +3 z^8 a^{-6} -9 z^6 a^{-6} +5 z^4 a^{-6} -3 z^2 a^{-6} + a^{-6} +z^9 a^{-5} +z^7 a^{-5} -11 z^5 a^{-5} +8 z^3 a^{-5} -z a^{-5} +4 z^8 a^{-4} -15 z^6 a^{-4} +19 z^4 a^{-4} -10 z^2 a^{-4} +z^9 a^{-3} -3 z^7 a^{-3} +2 z^5 a^{-3} +3 z^3 a^{-3} -3 z a^{-3} +2 a^{-3} z^{-1} +z^8 a^{-2} -5 z^6 a^{-2} +7 z^4 a^{-2} +5 z^2 a^{-2} -5 a^{-2} +a z^7-7 a z^5-4 z^5 a^{-1} +14 a z^3+16 z^3 a^{-1} -11 a z-14 z a^{-1} +3 a z^{-1} +5 a^{-1} z^{-1} -4 z^4+10 z^2-5 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-101234567χ
16           1-1
14          2 2
12         31 -2
10        32  1
8       43   -1
6     133    -1
4     34     1
2   133      -1
0    4       4
-2  11        0
-41           1
-61           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2 i=4
r=-4 {\mathbb Z} {\mathbb Z}
r=-3
r=-2 {\mathbb Z}
r=-1 {\mathbb Z} {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3} {\mathbb Z}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n58.gif

L11n58

L11n60.gif

L11n60