L11n6

From Knot Atlas
Jump to: navigation, search

L11n5.gif

L11n5

L11n7.gif

L11n7

Contents

L11n6.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n6 at Knotilus!


Link Presentations

[edit Notes on L11n6's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X4,17,1,18 X9,14,10,15 X8493 X5,11,6,10 X11,19,12,18 X13,20,14,21 X19,5,20,22 X21,12,22,13 X2,16,3,15
Gauss code {1, -11, 5, -3}, {-6, -1, 2, -5, -4, 6, -7, 10, -8, 4, 11, -2, 3, 7, -9, 8, -10, 9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11n6 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (v-1) \left(v^2-3 v+1\right)}{\sqrt{u} v^{3/2}} (db)
Jones polynomial q^{9/2}-\frac{1}{q^{9/2}}-3 q^{7/2}+\frac{2}{q^{7/2}}+4 q^{5/2}-\frac{4}{q^{5/2}}-6 q^{3/2}+\frac{6}{q^{3/2}}+6 \sqrt{q}-\frac{7}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^5 z^{-1} -3 z a^3-3 a^3 z^{-1} +3 z^3 a+6 z a+4 a z^{-1} -z^5 a^{-1} -3 z^3 a^{-1} -4 z a^{-1} -2 a^{-1} z^{-1} +z^3 a^{-3} +z a^{-3} (db)
Kauffman polynomial a^5 z^3-2 a^5 z+a^5 z^{-1} +z^6 a^{-4} +2 a^4 z^4-3 z^4 a^{-4} -3 a^4 z^2+z^2 a^{-4} +a^4+a^3 z^7+3 z^7 a^{-3} -4 a^3 z^5-11 z^5 a^{-3} +12 a^3 z^3+9 z^3 a^{-3} -12 a^3 z-3 z a^{-3} +3 a^3 z^{-1} +2 a^2 z^8+3 z^8 a^{-2} -9 a^2 z^6-10 z^6 a^{-2} +18 a^2 z^4+6 z^4 a^{-2} -12 a^2 z^2-z^2 a^{-2} +3 a^2+ a^{-2} +a z^9+z^9 a^{-1} +2 z^7 a^{-1} -13 a z^5-20 z^5 a^{-1} +30 a z^3+28 z^3 a^{-1} -20 a z-13 z a^{-1} +4 a z^{-1} +2 a^{-1} z^{-1} +5 z^8-20 z^6+25 z^4-11 z^2+2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-1012345χ
10         1-1
8        2 2
6       21 -1
4      42  2
2    132   0
0    54    1
-2   34     1
-4  13      -2
-6 13       2
-8 1        -1
-101         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0 i=2
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{5} {\mathbb Z}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n5.gif

L11n5

L11n7.gif

L11n7