L11n64

From Knot Atlas
Jump to: navigation, search

L11n63.gif

L11n63

L11n65.gif

L11n65

Contents

L11n64.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n64 at Knotilus!


Link Presentations

[edit Notes on L11n64's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X14,8,15,7 X15,20,16,21 X11,18,12,19 X19,12,20,13 X17,22,18,5 X21,16,22,17 X8,14,9,13 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, 3, -9, 11, -2, -5, 6, 9, -3, -4, 8, -7, 5, -6, 4, -8, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n64 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v^5-2 u v^4+u v^2-u-v^5+v^3-2 v+1}{\sqrt{u} v^{5/2}} (db)
Jones polynomial -\frac{1}{\sqrt{q}}+\frac{2}{q^{3/2}}-\frac{3}{q^{5/2}}+\frac{3}{q^{7/2}}-\frac{3}{q^{9/2}}+\frac{1}{q^{11/2}}-\frac{2}{q^{13/2}}+\frac{1}{q^{17/2}}-\frac{1}{q^{19/2}}+\frac{1}{q^{21/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial -a^{11} z^{-1} +3 a^9 z+2 a^9 z^{-1} -a^7 z^5-5 a^7 z^3-4 a^7 z+a^5 z^7+5 a^5 z^5+6 a^5 z^3+2 a^5 z-a^5 z^{-1} -a^3 z^5-4 a^3 z^3-3 a^3 z (db)
Kauffman polynomial -z^6 a^{12}+5 z^4 a^{12}-6 z^2 a^{12}+2 a^{12}-z^7 a^{11}+5 z^5 a^{11}-5 z^3 a^{11}+2 z a^{11}-a^{11} z^{-1} -z^6 a^{10}+8 z^4 a^{10}-12 z^2 a^{10}+5 a^{10}+2 z^5 a^9-3 z^3 a^9+3 z a^9-2 a^9 z^{-1} -z^8 a^8+6 z^6 a^8-6 z^4 a^8-z^2 a^8+3 a^8-z^9 a^7+5 z^7 a^7-5 z^5 a^7+3 z^3 a^7-3 z a^7-3 z^8 a^6+16 z^6 a^6-22 z^4 a^6+10 z^2 a^6-a^6-z^9 a^5+3 z^7 a^5+3 z^5 a^5-6 z^3 a^5-z a^5+a^5 z^{-1} -2 z^8 a^4+10 z^6 a^4-13 z^4 a^4+5 z^2 a^4-z^7 a^3+5 z^5 a^3-7 z^3 a^3+3 z a^3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-1012χ
0           11
-2          1 -1
-4         21 1
-6        22  0
-8      121   0
-10     112    2
-12    142     1
-14   1 1      2
-16   12       -1
-18 11         0
-20            0
-221           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4 i=-2
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{2} {\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4} {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n63.gif

L11n63

L11n65.gif

L11n65