L11n67

From Knot Atlas
Jump to: navigation, search

L11n66.gif

L11n66

L11n68.gif

L11n68

Contents

L11n67.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n67 at Knotilus!


Link Presentations

[edit Notes on L11n67's Link Presentations]

Planar diagram presentation X6172 X3,10,4,11 X9,20,10,21 X13,18,14,19 X7,14,8,15 X17,8,18,9 X19,12,20,13 X15,22,16,5 X21,16,22,17 X2536 X11,4,12,1
Gauss code {1, -10, -2, 11}, {10, -1, -5, 6, -3, 2, -11, 7, -4, 5, -8, 9, -6, 4, -7, 3, -9, 8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11n67 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{5 t(1) t(2)^3-t(2)^3-9 t(1) t(2)^2+6 t(2)^2+6 t(1) t(2)-9 t(2)-t(1)+5}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial -\frac{1}{q^{5/2}}+\frac{3}{q^{7/2}}-\frac{8}{q^{9/2}}+\frac{11}{q^{11/2}}-\frac{14}{q^{13/2}}+\frac{14}{q^{15/2}}-\frac{14}{q^{17/2}}+\frac{10}{q^{19/2}}-\frac{6}{q^{21/2}}+\frac{3}{q^{23/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial -a^{13} z^{-1} +z^3 a^{11}+2 z a^{11}+a^{11} z^{-1} -z^5 a^9+4 z a^9+2 a^9 z^{-1} -3 z^5 a^7-9 z^3 a^7-7 z a^7-2 a^7 z^{-1} -z^5 a^5-2 z^3 a^5-z a^5 (db)
Kauffman polynomial -6 z^4 a^{14}+11 z^2 a^{14}-4 a^{14}-3 z^7 a^{13}+3 z^5 a^{13}-z^3 a^{13}-z a^{13}+a^{13} z^{-1} -5 z^8 a^{12}+13 z^6 a^{12}-27 z^4 a^{12}+28 z^2 a^{12}-9 a^{12}-2 z^9 a^{11}-5 z^7 a^{11}+14 z^5 a^{11}-11 z^3 a^{11}+z a^{11}+a^{11} z^{-1} -10 z^8 a^{10}+19 z^6 a^{10}-17 z^4 a^{10}+11 z^2 a^{10}-4 a^{10}-2 z^9 a^9-8 z^7 a^9+24 z^5 a^9-24 z^3 a^9+12 z a^9-2 a^9 z^{-1} -5 z^8 a^8+3 z^6 a^8+8 z^4 a^8-7 z^2 a^8+2 a^8-6 z^7 a^7+12 z^5 a^7-12 z^3 a^7+9 z a^7-2 a^7 z^{-1} -3 z^6 a^6+4 z^4 a^6-z^2 a^6-z^5 a^5+2 z^3 a^5-z a^5 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-4         11
-6        31-2
-8       5  5
-10      63  -3
-12     85   3
-14    77    0
-16   77     0
-18  37      4
-20 37       -4
-22 3        3
-243         -3
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-9 {\mathbb Z}^{3}
r=-8 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-7 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-6 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-5 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-4 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n66.gif

L11n66

L11n68.gif

L11n68