L7a5

From Knot Atlas
Jump to: navigation, search

L7a4.gif

L7a4

L7a6.gif

L7a6

Contents

L7a5.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L7a5 at Knotilus!

L7a5 is 7^2_2 in the Rolfsen table of links.


Link Presentations

[edit Notes on L7a5's Link Presentations]

Planar diagram presentation X8192 X10,3,11,4 X12,6,13,5 X14,11,7,12 X4,14,5,13 X2738 X6,9,1,10
Gauss code {1, -6, 2, -5, 3, -7}, {6, -1, 7, -2, 4, -3, 5, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L7a5 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u+v-1) (u v-u-v)}{u v} (db)
Jones polynomial -q^{3/2}+2 \sqrt{q}-\frac{3}{\sqrt{q}}+\frac{3}{q^{3/2}}-\frac{4}{q^{5/2}}+\frac{2}{q^{7/2}}-\frac{2}{q^{9/2}}+\frac{1}{q^{11/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial -z a^5+z^3 a^3+z a^3+a^3 z^{-1} +z^3 a-a z^{-1} -z a^{-1} (db)
Kauffman polynomial -z^4 a^6+2 z^2 a^6-2 z^5 a^5+5 z^3 a^5-3 z a^5-z^6 a^4+2 z^2 a^4-4 z^5 a^3+8 z^3 a^3-6 z a^3+a^3 z^{-1} -z^6 a^2-z^4 a^2+2 z^2 a^2-a^2-2 z^5 a+2 z^3 a-2 z a+a z^{-1} -2 z^4+2 z^2-z^3 a^{-1} +z a^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-1012χ
4       11
2      1 -1
0     21 1
-2    22  0
-4   21   1
-6  13    2
-8 11     0
-10 1      1
-121       -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L7a4.gif

L7a4

L7a6.gif

L7a6