L8a16

From Knot Atlas
Jump to: navigation, search

L8a15.gif

L8a15

L8a17.gif

L8a17

Contents

L8a16.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L8a16 at Knotilus!

L8a16 is 8^3_{5} in the Rolfsen table of links.

Depiction obtained by knotilus

Link Presentations

[edit Notes on L8a16's Link Presentations]

Planar diagram presentation X6172 X12,6,13,5 X8493 X2,14,3,13 X14,7,15,8 X16,10,11,9 X10,12,5,11 X4,15,1,16
Gauss code {1, -4, 3, -8}, {2, -1, 5, -3, 6, -7}, {7, -2, 4, -5, 8, -6}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gif
A Morse Link Presentation L8a16 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) (t(3)-1) (t(2) t(3)+1)}{\sqrt{t(1)} t(2) t(3)} (db)
Jones polynomial -q^6+3 q^5-4 q^4+6 q^3-5 q^2- q^{-2} +6 q+3 q^{-1} -3 (db)
Signature 2 (db)
HOMFLY-PT polynomial z^6 a^{-2} +4 z^4 a^{-2} -z^4 a^{-4} -z^4+4 z^2 a^{-2} -2 z^2 a^{-4} -2 z^2- a^{-2} +1-2 a^{-2} z^{-2} + a^{-4} z^{-2} + z^{-2} (db)
Kauffman polynomial 2 z^7 a^{-1} +2 z^7 a^{-3} +7 z^6 a^{-2} +4 z^6 a^{-4} +3 z^6+a z^5-3 z^5 a^{-1} +4 z^5 a^{-5} -17 z^4 a^{-2} -5 z^4 a^{-4} +3 z^4 a^{-6} -9 z^4-2 a z^3-z^3 a^{-1} -3 z^3 a^{-3} -3 z^3 a^{-5} +z^3 a^{-7} +10 z^2 a^{-2} +2 z^2 a^{-4} -2 z^2 a^{-6} +6 z^2-z a^{-1} -z a^{-3} + a^{-2} + a^{-4} +1+2 a^{-1} z^{-1} +2 a^{-3} z^{-1} -2 a^{-2} z^{-2} - a^{-4} z^{-2} - z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-3-2-1012345χ
13        1-1
11       2 2
9      21 -1
7     42  2
5    34   1
3   32    1
1  25     3
-1 11      0
-3 2       2
-51        -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L8a15.gif

L8a15

L8a17.gif

L8a17