L8a3

From Knot Atlas
Jump to: navigation, search

L8a2.gif

L8a2

L8a4.gif

L8a4

Contents

L8a3.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L8a3 at Knotilus!

L8a3 is 8^2_{9} in the Rolfsen table of links.


Link Presentations

[edit Notes on L8a3's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X14,8,15,7 X16,11,5,12 X12,15,13,16 X8,14,9,13 X2536 X4,9,1,10
Gauss code {1, -7, 2, -8}, {7, -1, 3, -6, 8, -2, 4, -5, 6, -3, 5, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L8a3 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{2 u v^2-4 u v+u+v^3-4 v^2+2 v}{\sqrt{u} v^{3/2}} (db)
Jones polynomial -\frac{4}{q^{9/2}}+\frac{4}{q^{7/2}}-\frac{5}{q^{5/2}}-q^{3/2}+\frac{5}{q^{3/2}}-\frac{1}{q^{13/2}}+\frac{2}{q^{11/2}}+2 \sqrt{q}-\frac{4}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^7 z^{-1} -3 z a^5-2 a^5 z^{-1} +2 z^3 a^3+3 z a^3+2 a^3 z^{-1} +z^3 a-z a-a z^{-1} -z a^{-1} (db)
Kauffman polynomial -z^5 a^7+3 z^3 a^7-3 z a^7+a^7 z^{-1} -2 z^6 a^6+5 z^4 a^6-2 z^2 a^6-z^7 a^5-2 z^5 a^5+11 z^3 a^5-8 z a^5+2 a^5 z^{-1} -5 z^6 a^4+11 z^4 a^4-6 z^2 a^4+a^4-z^7 a^3-4 z^5 a^3+12 z^3 a^3-9 z a^3+2 a^3 z^{-1} -3 z^6 a^2+4 z^4 a^2-3 z^2 a^2-3 z^5 a+3 z^3 a-3 z a+a z^{-1} -2 z^4+z^2-z^3 a^{-1} +z a^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012χ
4        11
2       1 -1
0      31 2
-2     32  -1
-4    22   0
-6   23    1
-8  22     0
-10 13      2
-12 1       -1
-141        1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L8a2.gif

L8a2

L8a4.gif

L8a4