L8a4

From Knot Atlas
Jump to: navigation, search

L8a3.gif

L8a3

L8a5.gif

L8a5

Contents

L8a4.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L8a4 at Knotilus!

L8a4 is 8^2_{12} in the Rolfsen table of links.


Link Presentations

[edit Notes on L8a4's Link Presentations]

Planar diagram presentation X6172 X10,4,11,3 X12,10,13,9 X16,13,5,14 X14,7,15,8 X8,15,9,16 X2536 X4,12,1,11
Gauss code {1, -7, 2, -8}, {7, -1, 5, -6, 3, -2, 8, -3, 4, -5, 6, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L8a4 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(2)-1)^3}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial q^{5/2}-3 q^{3/2}+4 \sqrt{q}-\frac{6}{\sqrt{q}}+\frac{5}{q^{3/2}}-\frac{6}{q^{5/2}}+\frac{4}{q^{7/2}}-\frac{2}{q^{9/2}}+\frac{1}{q^{11/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial -z a^5-a^5 z^{-1} +2 z^3 a^3+4 z a^3+3 a^3 z^{-1} -z^5 a-3 z^3 a-4 z a-2 a z^{-1} +z^3 a^{-1} +z a^{-1} (db)
Kauffman polynomial -a^3 z^7-a z^7-2 a^4 z^6-5 a^2 z^6-3 z^6-2 a^5 z^5-4 a^3 z^5-5 a z^5-3 z^5 a^{-1} -a^6 z^4+5 a^2 z^4-z^4 a^{-2} +3 z^4+3 a^5 z^3+9 a^3 z^3+11 a z^3+5 z^3 a^{-1} +2 a^6 z^2+4 a^4 z^2+2 a^2 z^2+z^2 a^{-2} +z^2-2 a^5 z-7 a^3 z-7 a z-2 z a^{-1} -a^6-3 a^4-3 a^2+a^5 z^{-1} +3 a^3 z^{-1} +2 a z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123χ
6        1-1
4       2 2
2      21 -1
0     42  2
-2    34   1
-4   32    1
-6  13     2
-8 13      -2
-10 1       1
-121        -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L8a3.gif

L8a3

L8a5.gif

L8a5