L8a9

From Knot Atlas
Jump to: navigation, search

L8a8.gif

L8a8

L8a10.gif

L8a10

Contents

L8a9.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L8a9 at Knotilus!

L8a9 is 8^2_{8} in the Rolfsen table of links.


Link Presentations

[edit Notes on L8a9's Link Presentations]

Planar diagram presentation X8192 X10,4,11,3 X16,10,7,9 X2738 X4,16,5,15 X12,5,13,6 X14,11,15,12 X6,13,1,14
Gauss code {1, -4, 2, -5, 6, -8}, {4, -1, 3, -2, 7, -6, 8, -7, 5, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L8a9 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(2)^2 t(1)^2-2 t(2) t(1)^2+t(1)^2-2 t(2)^2 t(1)+5 t(2) t(1)-2 t(1)+t(2)^2-2 t(2)+1}{t(1) t(2)} (db)
Jones polynomial -\frac{3}{q^{9/2}}+\frac{4}{q^{7/2}}+q^{5/2}-\frac{6}{q^{5/2}}-3 q^{3/2}+\frac{6}{q^{3/2}}+\frac{1}{q^{11/2}}+4 \sqrt{q}-\frac{6}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^5 (-z)+2 a^3 z^3+3 a^3 z+a^3 z^{-1} -a z^5-3 a z^3+z^3 a^{-1} -4 a z-a z^{-1} +z a^{-1} (db)
Kauffman polynomial a^6 z^4-a^6 z^2+3 a^5 z^5-5 a^5 z^3+2 a^5 z+3 a^4 z^6-3 a^4 z^4+a^3 z^7+6 a^3 z^5-13 a^3 z^3+7 a^3 z-a^3 z^{-1} +6 a^2 z^6-8 a^2 z^4+z^4 a^{-2} +2 a^2 z^2-z^2 a^{-2} +a^2+a z^7+6 a z^5+3 z^5 a^{-1} -13 a z^3-5 z^3 a^{-1} +7 a z+2 z a^{-1} -a z^{-1} +3 z^6-3 z^4 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-10123χ
6        1-1
4       2 2
2      21 -1
0     42  2
-2    33   0
-4   33    0
-6  24     2
-8 12      -1
-10 2       2
-121        -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L8a8.gif

L8a8

L8a10.gif

L8a10