L8n1

From Knot Atlas
Jump to: navigation, search

L8a21.gif

L8a21

L8n2.gif

L8n2

Contents

L8n1.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L8n1 at Knotilus!

L8n1 is 8^2_{16} in the Rolfsen table of links.


Link Presentations

[edit Notes on L8n1's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X4,15,1,16 X9,12,10,13 X3849 X5,11,6,10 X11,5,12,16 X13,2,14,3
Gauss code {1, 8, -5, -3}, {-6, -1, 2, 5, -4, 6, -7, 4, -8, -2, 3, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L8n1 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v^3-2 u v^2-2 v+1}{\sqrt{u} v^{3/2}} (db)
Jones polynomial \frac{2}{q^{9/2}}-\frac{2}{q^{7/2}}+\frac{2}{q^{5/2}}-\frac{2}{q^{3/2}}-\frac{2}{q^{11/2}}-\sqrt{q}+\frac{1}{\sqrt{q}} (db)
Signature -3 (db)
HOMFLY-PT polynomial a^7 z^{-1} -a^5 z^3-3 a^5 z-2 a^5 z^{-1} +a^3 z^5+4 a^3 z^3+4 a^3 z+2 a^3 z^{-1} -a z^3-3 a z-a z^{-1} (db)
Kauffman polynomial 3 a^7 z-a^7 z^{-1} +a^6 z^4+2 a^5 z^5-6 a^5 z^3+7 a^5 z-2 a^5 z^{-1} +a^4 z^6-2 a^4 z^4+a^4 z^2-a^4+3 a^3 z^5-10 a^3 z^3+8 a^3 z-2 a^3 z^{-1} +a^2 z^6-3 a^2 z^4+a^2 z^2+a z^5-4 a z^3+4 a z-a z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-1012χ
2      11
0       0
-2    21 1
-4   11  0
-6  11   0
-8 11    0
-1011     0
-122      2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-4 {\mathbb Z}^{2} {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L8a21.gif

L8a21

L8n2.gif

L8n2