L9a16

From Knot Atlas
Jump to: navigation, search

L9a15.gif

L9a15

L9a17.gif

L9a17

Contents

L9a16.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9a16 at Knotilus!

L9a16 is 9^2_{28} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9a16's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X14,10,15,9 X10,14,11,13 X18,15,5,16 X16,7,17,8 X8,17,9,18 X2536 X4,11,1,12
Gauss code {1, -8, 2, -9}, {8, -1, 6, -7, 3, -4, 9, -2, 4, -3, 5, -6, 7, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L9a16 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v^3-4 u v^2+4 u v-2 u-2 v^3+4 v^2-4 v+1}{\sqrt{u} v^{3/2}} (db)
Jones polynomial -\sqrt{q}+\frac{3}{\sqrt{q}}-\frac{5}{q^{3/2}}+\frac{6}{q^{5/2}}-\frac{8}{q^{7/2}}+\frac{7}{q^{9/2}}-\frac{7}{q^{11/2}}+\frac{4}{q^{13/2}}-\frac{2}{q^{15/2}}+\frac{1}{q^{17/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial -a^9 z^{-1} +3 z a^7+3 a^7 z^{-1} -3 z^3 a^5-5 z a^5-2 a^5 z^{-1} +z^5 a^3+2 z^3 a^3+z a^3-z^3 a-z a (db)
Kauffman polynomial a^{10} z^4-2 a^{10} z^2+a^{10}+2 a^9 z^5-3 a^9 z^3+2 a^9 z-a^9 z^{-1} +2 a^8 z^6+a^8 z^4-5 a^8 z^2+3 a^8+2 a^7 z^7+a^7 z^5-5 a^7 z^3+7 a^7 z-3 a^7 z^{-1} +a^6 z^8+3 a^6 z^6-4 a^6 z^4-a^6 z^2+3 a^6+5 a^5 z^7-7 a^5 z^5+4 a^5 z-2 a^5 z^{-1} +a^4 z^8+4 a^4 z^6-11 a^4 z^4+5 a^4 z^2+3 a^3 z^7-5 a^3 z^5+3 a^2 z^6-7 a^2 z^4+3 a^2 z^2+a z^5-2 a z^3+a z (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
2         11
0        2 -2
-2       31 2
-4      43  -1
-6     42   2
-8    34    1
-10   44     0
-12  14      3
-14 13       -2
-16 1        1
-181         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9a15.gif

L9a15

L9a17.gif

L9a17