L9a18

From Knot Atlas
Jump to: navigation, search

L9a17.gif

L9a17

L9a19.gif

L9a19

Contents

L9a18.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9a18 at Knotilus!

L9a18 is is 9^2_{10} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9a18's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X18,8,5,7 X16,10,17,9 X14,12,15,11 X10,16,11,15 X8,18,9,17 X2536 X4,14,1,13
Gauss code {1, -8, 2, -9}, {8, -1, 3, -7, 4, -6, 5, -2, 9, -5, 6, -4, 7, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L9a18 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{3 (t(1)-1) (t(2)-1)}{\sqrt{t(1)} \sqrt{t(2)}} (db)
Jones polynomial -3 q^{9/2}+4 q^{7/2}-4 q^{5/2}+3 q^{3/2}-\frac{1}{q^{3/2}}+q^{15/2}-2 q^{13/2}+2 q^{11/2}-3 \sqrt{q}+\frac{1}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial z a^{-7} -z^3 a^{-5} -z a^{-5} -z^3 a^{-3} -z^3 a^{-1} +a z-z a^{-1} +a z^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial -z^8 a^{-4} -z^8 a^{-6} -z^7 a^{-3} -3 z^7 a^{-5} -2 z^7 a^{-7} -z^6 a^{-2} +3 z^6 a^{-4} +3 z^6 a^{-6} -z^6 a^{-8} -z^5 a^{-1} +z^5 a^{-3} +11 z^5 a^{-5} +9 z^5 a^{-7} -4 z^4 a^{-4} -z^4 a^{-6} +4 z^4 a^{-8} -z^4-a z^3-z^3 a^{-1} -10 z^3 a^{-5} -10 z^3 a^{-7} +3 z^2 a^{-4} -3 z^2 a^{-8} +2 a z+2 z a^{-1} +2 z a^{-5} +2 z a^{-7} +1-a z^{-1} - a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-101234567χ
16         1-1
14        1 1
12       11 0
10      21  1
8     21   -1
6    22    0
4   12     1
2  22      0
0 13       2
-2          0
-41         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{3} {\mathbb Z}^{2}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9a17.gif

L9a17

L9a19.gif

L9a19