L9a2

From Knot Atlas
Jump to: navigation, search

L9a1.gif

L9a1

L9a3.gif

L9a3

Contents

L9a2.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9a2 at Knotilus!

L9a2 is 9^2_{31} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9a2's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X4,15,1,16 X12,6,13,5 X8493 X16,10,17,9 X18,12,5,11 X10,18,11,17 X2,14,3,13
Gauss code {1, -9, 5, -3}, {4, -1, 2, -5, 6, -8, 7, -4, 9, -2, 3, -6, 8, -7}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gif
A Morse Link Presentation L9a2 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) \left(t(2)^4-t(2)^3+t(2)^2-t(2)+1\right)}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial -q^{15/2}+3 q^{13/2}-4 q^{11/2}+6 q^{9/2}-7 q^{7/2}+6 q^{5/2}-6 q^{3/2}+3 \sqrt{q}-\frac{3}{\sqrt{q}}+\frac{1}{q^{3/2}} (db)
Signature 3 (db)
HOMFLY-PT polynomial z^7 a^{-3} -z^5 a^{-1} +5 z^5 a^{-3} -z^5 a^{-5} -3 z^3 a^{-1} +7 z^3 a^{-3} -3 z^3 a^{-5} +z a^{-3} -z a^{-5} +2 a^{-1} z^{-1} -3 a^{-3} z^{-1} + a^{-5} z^{-1} (db)
Kauffman polynomial z^3 a^{-9} +3 z^4 a^{-8} -2 z^2 a^{-8} +4 z^5 a^{-7} -3 z^3 a^{-7} +4 z^6 a^{-6} -3 z^4 a^{-6} -2 z^2 a^{-6} + a^{-6} +4 z^7 a^{-5} -8 z^5 a^{-5} +6 z^3 a^{-5} -2 z a^{-5} - a^{-5} z^{-1} +2 z^8 a^{-4} -2 z^6 a^{-4} -3 z^4 a^{-4} +3 a^{-4} +7 z^7 a^{-3} -24 z^5 a^{-3} +22 z^3 a^{-3} -3 z a^{-3} -3 a^{-3} z^{-1} +2 z^8 a^{-2} -5 z^6 a^{-2} +z^2 a^{-2} +3 a^{-2} +3 z^7 a^{-1} -12 z^5 a^{-1} +12 z^3 a^{-1} -z a^{-1} -2 a^{-1} z^{-1} +z^6-3 z^4+z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-3-2-10123456χ
16         11
14        2 -2
12       21 1
10      42  -2
8     32   1
6    34    1
4   33     0
2  25      3
0 11       0
-2 2        2
-41         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9a1.gif

L9a1

L9a3.gif

L9a3