L9a26

From Knot Atlas
Jump to: navigation, search

L9a25.gif

L9a25

L9a27.gif

L9a27

Contents

L9a26.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9a26 at Knotilus!

L9a26 is 9^2_{11} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9a26's Link Presentations]

Planar diagram presentation X8192 X10,4,11,3 X18,10,7,9 X14,6,15,5 X16,14,17,13 X12,18,13,17 X2738 X4,12,5,11 X6,16,1,15
Gauss code {1, -7, 2, -8, 4, -9}, {7, -1, 3, -2, 8, -6, 5, -4, 9, -5, 6, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L9a26 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 u^2 v^2-3 u^2 v+u^2-3 u v^2+5 u v-3 u+v^2-3 v+2}{u v} (db)
Jones polynomial 8 q^{9/2}-8 q^{7/2}+6 q^{5/2}-5 q^{3/2}+q^{17/2}-3 q^{15/2}+5 q^{13/2}-7 q^{11/2}+2 \sqrt{q}-\frac{1}{\sqrt{q}} (db)
Signature 3 (db)
HOMFLY-PT polynomial z^3 a^{-7} +z a^{-7} -z^5 a^{-5} -2 z^3 a^{-5} -z a^{-5} -z^5 a^{-3} -2 z^3 a^{-3} -z a^{-3} - a^{-3} z^{-1} +z^3 a^{-1} +2 z a^{-1} + a^{-1} z^{-1} (db)
Kauffman polynomial z^4 a^{-10} -z^2 a^{-10} +3 z^5 a^{-9} -4 z^3 a^{-9} +z a^{-9} +4 z^6 a^{-8} -5 z^4 a^{-8} +2 z^2 a^{-8} +3 z^7 a^{-7} -z^5 a^{-7} -2 z^3 a^{-7} +z a^{-7} +z^8 a^{-6} +5 z^6 a^{-6} -9 z^4 a^{-6} +4 z^2 a^{-6} +5 z^7 a^{-5} -6 z^5 a^{-5} +z a^{-5} +z^8 a^{-4} +3 z^6 a^{-4} -7 z^4 a^{-4} +2 z^2 a^{-4} +2 z^7 a^{-3} -z^5 a^{-3} -5 z^3 a^{-3} +4 z a^{-3} - a^{-3} z^{-1} +2 z^6 a^{-2} -4 z^4 a^{-2} +z^2 a^{-2} + a^{-2} +z^5 a^{-1} -3 z^3 a^{-1} +3 z a^{-1} - a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-101234567χ
18         1-1
16        2 2
14       31 -2
12      42  2
10     43   -1
8    44    0
6   35     2
4  23      -1
2 14       3
0 1        -1
-21         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9a25.gif

L9a25

L9a27.gif

L9a27