L9a34

From Knot Atlas
Jump to: navigation, search

L9a33.gif

L9a33

L9a35.gif

L9a35

Contents

L9a34.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9a34 at Knotilus!

L9a34 is 9^2_{6} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9a34's Link Presentations]

Planar diagram presentation X10,1,11,2 X14,5,15,6 X12,3,13,4 X16,8,17,7 X18,15,9,16 X4,13,5,14 X6,18,7,17 X2,9,3,10 X8,11,1,12
Gauss code {1, -8, 3, -6, 2, -7, 4, -9}, {8, -1, 9, -3, 6, -2, 5, -4, 7, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L9a34 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)+t(2)-1) (t(1) t(2)+1) (t(2) t(1)-t(1)-t(2))}{t(1)^{3/2} t(2)^{3/2}} (db)
Jones polynomial \frac{6}{q^{9/2}}-\frac{6}{q^{7/2}}+\frac{5}{q^{5/2}}-\frac{4}{q^{3/2}}+\frac{1}{q^{17/2}}-\frac{2}{q^{15/2}}+\frac{3}{q^{13/2}}-\frac{6}{q^{11/2}}-\sqrt{q}+\frac{2}{\sqrt{q}} (db)
Signature -3 (db)
HOMFLY-PT polynomial -z^3 a^7-2 z a^7+z^5 a^5+3 z^3 a^5+3 z a^5+a^5 z^{-1} +z^5 a^3+2 z^3 a^3-z a^3-a^3 z^{-1} -z^3 a-2 z a (db)
Kauffman polynomial -z^4 a^{10}+2 z^2 a^{10}-2 z^5 a^9+4 z^3 a^9-2 z a^9-2 z^6 a^8+2 z^4 a^8-2 z^7 a^7+3 z^5 a^7-3 z^3 a^7-z a^7-z^8 a^6-z^2 a^6-4 z^7 a^5+10 z^5 a^5-12 z^3 a^5+6 z a^5-a^5 z^{-1} -z^8 a^4+2 z^4 a^4-z^2 a^4+a^4-2 z^7 a^3+4 z^5 a^3-2 z^3 a^3+3 z a^3-a^3 z^{-1} -2 z^6 a^2+5 z^4 a^2-2 z^2 a^2-z^5 a+3 z^3 a-2 z a (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
2         11
0        1 -1
-2       31 2
-4      32  -1
-6     32   1
-8    33    0
-10   33     0
-12  14      3
-14 12       -1
-16 1        1
-181         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9a33.gif

L9a33

L9a35.gif

L9a35