L9a35

From Knot Atlas
Jump to: navigation, search

L9a34.gif

L9a34

L9a36.gif

L9a36

Contents

L9a35.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9a35 at Knotilus!

L9a35 is 9^2_{9} in the Rolfsen table of links.

More symmetric depiction

Link Presentations

[edit Notes on L9a35's Link Presentations]

Planar diagram presentation X10,1,11,2 X12,3,13,4 X16,8,17,7 X14,6,15,5 X18,13,9,14 X6,16,7,15 X4,18,5,17 X2,9,3,10 X8,11,1,12
Gauss code {1, -8, 2, -7, 4, -6, 3, -9}, {8, -1, 9, -2, 5, -4, 6, -3, 7, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L9a35 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) \left(t(2) t(1)^2+t(2)^2 t(1)-t(2) t(1)+t(1)+t(2)\right)}{t(1)^{3/2} t(2)^{3/2}} (db)
Jones polynomial -q^{9/2}+\frac{1}{q^{9/2}}+3 q^{7/2}-\frac{2}{q^{7/2}}-5 q^{5/2}+\frac{3}{q^{5/2}}+6 q^{3/2}-\frac{6}{q^{3/2}}-7 \sqrt{q}+\frac{6}{\sqrt{q}} (db)
Signature 1 (db)
HOMFLY-PT polynomial a z^5+z^5 a^{-1} -a^3 z^3+3 a z^3+2 z^3 a^{-1} -z^3 a^{-3} -2 a^3 z+3 a z-z a^{-3} +a z^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial -a^2 z^8-z^8-2 a^3 z^7-5 a z^7-3 z^7 a^{-1} -a^4 z^6-5 z^6 a^{-2} -4 z^6+8 a^3 z^5+14 a z^5+z^5 a^{-1} -5 z^5 a^{-3} +4 a^4 z^4+7 a^2 z^4+6 z^4 a^{-2} -3 z^4 a^{-4} +12 z^4-10 a^3 z^3-12 a z^3+4 z^3 a^{-1} +5 z^3 a^{-3} -z^3 a^{-5} -4 a^4 z^2-6 a^2 z^2-2 z^2 a^{-2} +z^2 a^{-4} -5 z^2+4 a^3 z+6 a z-2 z a^{-3} +1-a z^{-1} - a^{-1} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-101234χ
10         11
8        2 -2
6       31 2
4      32  -1
2     43   1
0    45    1
-2   22     0
-4  14      3
-6 12       -1
-8 1        1
-101         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=0 i=2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9a34.gif

L9a34

L9a36.gif

L9a36