L9a36

From Knot Atlas
Jump to: navigation, search

L9a35.gif

L9a35

L9a37.gif

L9a37

Contents

L9a36.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9a36 at Knotilus!

L9a36 is 9^2_{1} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9a36's Link Presentations]

Planar diagram presentation X10,1,11,2 X12,4,13,3 X18,12,9,11 X14,6,15,5 X16,8,17,7 X2,9,3,10 X4,14,5,13 X6,16,7,15 X8,18,1,17
Gauss code {1, -6, 2, -7, 4, -8, 5, -9}, {6, -1, 3, -2, 7, -4, 8, -5, 9, -3}
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L9a36 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u^3 v^3-u^3 v^2-u^2 v^3+u^2 v^2-u^2 v-u v^2+u v-u-v+1}{u^{3/2} v^{3/2}} (db)
Jones polynomial -3 q^{9/2}+2 q^{7/2}-2 q^{5/2}+q^{3/2}+q^{19/2}-2 q^{17/2}+2 q^{15/2}-3 q^{13/2}+3 q^{11/2}-\sqrt{q} (db)
Signature 5 (db)
HOMFLY-PT polynomial z^5 a^{-7} +4 z^3 a^{-7} +3 z a^{-7} -z^7 a^{-5} -6 z^5 a^{-5} -11 z^3 a^{-5} -7 z a^{-5} - a^{-5} z^{-1} +z^5 a^{-3} +5 z^3 a^{-3} +6 z a^{-3} + a^{-3} z^{-1} (db)
Kauffman polynomial -z^8 a^{-4} -z^8 a^{-6} -z^7 a^{-3} -3 z^7 a^{-5} -2 z^7 a^{-7} +5 z^6 a^{-4} +3 z^6 a^{-6} -2 z^6 a^{-8} +6 z^5 a^{-3} +15 z^5 a^{-5} +7 z^5 a^{-7} -2 z^5 a^{-9} -6 z^4 a^{-4} +4 z^4 a^{-8} -2 z^4 a^{-10} -11 z^3 a^{-3} -21 z^3 a^{-5} -6 z^3 a^{-7} +2 z^3 a^{-9} -2 z^3 a^{-11} -2 z^2 a^{-6} +z^2 a^{-10} -z^2 a^{-12} +7 z a^{-3} +9 z a^{-5} +2 z a^{-7} +z a^{-9} +z a^{-11} + a^{-4} - a^{-3} z^{-1} - a^{-5} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-101234567χ
20         1-1
18        1 1
16       11 0
14      21  1
12     22   0
10    11    0
8   12     1
6  11      0
4 12       1
2          0
01         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=4 i=6
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{2} {\mathbb Z}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9a35.gif

L9a35

L9a37.gif

L9a37