L9a4

From Knot Atlas
Jump to: navigation, search

L9a3.gif

L9a3

L9a5.gif

L9a5

Contents

L9a4.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9a4 at Knotilus!

L9a4 is 9^2_{18} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9a4's Link Presentations]

Planar diagram presentation X6172 X10,4,11,3 X12,8,13,7 X16,10,17,9 X18,14,5,13 X14,18,15,17 X8,16,9,15 X2536 X4,12,1,11
Gauss code {1, -8, 2, -9}, {8, -1, 3, -7, 4, -2, 9, -3, 5, -6, 7, -4, 6, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L9a4 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 (u-1) (v-1) \left(v^2-v+1\right)}{\sqrt{u} v^{3/2}} (db)
Jones polynomial q^{17/2}-3 q^{15/2}+6 q^{13/2}-7 q^{11/2}+8 q^{9/2}-9 q^{7/2}+6 q^{5/2}-5 q^{3/2}+2 \sqrt{q}-\frac{1}{\sqrt{q}} (db)
Signature 3 (db)
HOMFLY-PT polynomial z^3 a^{-7} +z a^{-7} + a^{-7} z^{-1} -z^5 a^{-5} -2 z^3 a^{-5} -2 z a^{-5} -2 a^{-5} z^{-1} -z^5 a^{-3} -2 z^3 a^{-3} -z a^{-3} +z^3 a^{-1} +2 z a^{-1} + a^{-1} z^{-1} (db)
Kauffman polynomial -z^8 a^{-4} -z^8 a^{-6} -2 z^7 a^{-3} -6 z^7 a^{-5} -4 z^7 a^{-7} -2 z^6 a^{-2} -4 z^6 a^{-4} -7 z^6 a^{-6} -5 z^6 a^{-8} -z^5 a^{-1} +z^5 a^{-3} +10 z^5 a^{-5} +5 z^5 a^{-7} -3 z^5 a^{-9} +4 z^4 a^{-2} +11 z^4 a^{-4} +16 z^4 a^{-6} +8 z^4 a^{-8} -z^4 a^{-10} +3 z^3 a^{-1} +4 z^3 a^{-3} -6 z^3 a^{-5} -4 z^3 a^{-7} +3 z^3 a^{-9} -z^2 a^{-2} -8 z^2 a^{-4} -13 z^2 a^{-6} -5 z^2 a^{-8} +z^2 a^{-10} -3 z a^{-1} -2 z a^{-3} +3 z a^{-5} +2 z a^{-7} - a^{-2} +3 a^{-4} +5 a^{-6} +2 a^{-8} + a^{-1} z^{-1} -2 a^{-5} z^{-1} - a^{-7} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-101234567χ
18         1-1
16        2 2
14       41 -3
12      32  1
10     54   -1
8    43    1
6   25     3
4  34      -1
2 14       3
0 1        -1
-21         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=2 i=4
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9a3.gif

L9a3

L9a5.gif

L9a5