L9a40

From Knot Atlas
Jump to: navigation, search

L9a39.gif

L9a39

L9a41.gif

L9a41

Contents

L9a40.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9a40 at Knotilus!

L9a40 is 9^2_{4} in the Rolfsen table of links.


Povray depiction

Link Presentations

[edit Notes on L9a40's Link Presentations]

Planar diagram presentation X10,1,11,2 X2,11,3,12 X12,3,13,4 X8,9,1,10 X18,13,9,14 X14,8,15,7 X16,6,17,5 X6,16,7,15 X4,18,5,17
Gauss code {1, -2, 3, -9, 7, -8, 6, -4}, {4, -1, 2, -3, 5, -6, 8, -7, 9, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L9a40 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (v-1) \left(u^2 v+u v^2+u v+u+v\right)}{u^{3/2} v^{3/2}} (db)
Jones polynomial -q^{5/2}+q^{3/2}-2 \sqrt{q}+\frac{3}{\sqrt{q}}-\frac{4}{q^{3/2}}+\frac{3}{q^{5/2}}-\frac{4}{q^{7/2}}+\frac{3}{q^{9/2}}-\frac{2}{q^{11/2}}+\frac{1}{q^{13/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial -z^3 a^5-2 z a^5+z^5 a^3+3 z^3 a^3+z a^3+z^5 a+4 z^3 a+4 z a+a z^{-1} -z^3 a^{-1} -3 z a^{-1} - a^{-1} z^{-1} (db)
Kauffman polynomial a^8 z^2+2 a^7 z^3+3 a^6 z^4-2 a^6 z^2+4 a^5 z^5-8 a^5 z^3+4 a^5 z+3 a^4 z^6-6 a^4 z^4+a^4 z^2+2 a^3 z^7-4 a^3 z^5-2 a^3 z^3+2 a^3 z+a^2 z^8-2 a^2 z^6-2 a^2 z^4+2 a^2 z^2+3 a z^7+z^7 a^{-1} -14 a z^5-6 z^5 a^{-1} +19 a z^3+11 z^3 a^{-1} -8 a z+a z^{-1} -6 z a^{-1} + a^{-1} z^{-1} +z^8-5 z^6+7 z^4-2 z^2-1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-101234χ
6         11
4          0
2       21 1
0      1   -1
-2     32   1
-4    23    1
-6   21     1
-8  12      1
-10 12       -1
-12 1        1
-141         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}
r=4 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9a39.gif

L9a39

L9a41.gif

L9a41