L9a54

From Knot Atlas
Jump to: navigation, search

L9a53.gif

L9a53

L9a55.gif

L9a55

Contents

L9a54.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9a54 at Knotilus!

L9a54 is 9^3_{9} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9a54's Link Presentations]

Planar diagram presentation X6172 X10,4,11,3 X12,8,13,7 X18,13,15,14 X16,10,17,9 X8,16,9,15 X14,17,5,18 X2536 X4,12,1,11
Gauss code {1, -8, 2, -9}, {6, -5, 7, -4}, {8, -1, 3, -6, 5, -2, 9, -3, 4, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L9a54 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) (t(3)-1) \left(t(3)^2-t(3)+1\right)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} (db)
Jones polynomial -q^6+3 q^5-6 q^4+8 q^3+ q^{-3} -7 q^2-2 q^{-2} +9 q+5 q^{-1} -6 (db)
Signature 2 (db)
HOMFLY-PT polynomial z^6 a^{-2} +4 z^4 a^{-2} -z^4 a^{-4} -2 z^4+a^2 z^2+7 z^2 a^{-2} -2 z^2 a^{-4} -6 z^2+2 a^2+6 a^{-2} -2 a^{-4} -6+a^2 z^{-2} + a^{-2} z^{-2} -2 z^{-2} (db)
Kauffman polynomial z^8 a^{-2} +z^8+2 a z^7+7 z^7 a^{-1} +5 z^7 a^{-3} +a^2 z^6+11 z^6 a^{-2} +8 z^6 a^{-4} +4 z^6-6 a z^5-16 z^5 a^{-1} -4 z^5 a^{-3} +6 z^5 a^{-5} -4 a^2 z^4-35 z^4 a^{-2} -14 z^4 a^{-4} +3 z^4 a^{-6} -22 z^4+4 a z^3+3 z^3 a^{-1} -7 z^3 a^{-3} -5 z^3 a^{-5} +z^3 a^{-7} +6 a^2 z^2+30 z^2 a^{-2} +10 z^2 a^{-4} +26 z^2+2 a z+6 z a^{-1} +6 z a^{-3} +2 z a^{-5} -4 a^2-12 a^{-2} -4 a^{-4} -11-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-1012345χ
13         1-1
11        2 2
9       41 -3
7      42  2
5     34   1
3    64    2
1   47     3
-1  12      -1
-3 14       3
-5 1        -1
-71         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{6}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9a53.gif

L9a53

L9a55.gif

L9a55