L9a6

From Knot Atlas
Jump to: navigation, search

L9a5.gif

L9a5

L9a7.gif

L9a7

Contents

L9a6.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9a6 at Knotilus!

L9a6 is 9^2_{29} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9a6's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X16,11,17,12 X14,7,15,8 X8,15,9,16 X18,13,5,14 X12,17,13,18 X2536 X4,9,1,10
Gauss code {1, -8, 2, -9}, {8, -1, 4, -5, 9, -2, 3, -7, 6, -4, 5, -3, 7, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L9a6 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-2 u v^4+3 u v^3-3 u v^2+2 u v-u-v^5+2 v^4-3 v^3+3 v^2-2 v}{\sqrt{u} v^{5/2}} (db)
Jones polynomial -\frac{5}{q^{9/2}}+\frac{2}{q^{7/2}}-\frac{1}{q^{5/2}}+\frac{1}{q^{23/2}}-\frac{2}{q^{21/2}}+\frac{5}{q^{19/2}}-\frac{7}{q^{17/2}}+\frac{7}{q^{15/2}}-\frac{8}{q^{13/2}}+\frac{6}{q^{11/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial a^{11} (-z)-2 a^{11} z^{-1} +3 a^9 z^3+8 a^9 z+5 a^9 z^{-1} -2 a^7 z^5-7 a^7 z^3-7 a^7 z-3 a^7 z^{-1} -a^5 z^5-3 a^5 z^3-2 a^5 z (db)
Kauffman polynomial -z^4 a^{14}+2 z^2 a^{14}-a^{14}-2 z^5 a^{13}+2 z^3 a^{13}-3 z^6 a^{12}+3 z^4 a^{12}-z^2 a^{12}-3 z^7 a^{11}+4 z^5 a^{11}-6 z^3 a^{11}+6 z a^{11}-2 a^{11} z^{-1} -z^8 a^{10}-5 z^6 a^{10}+14 z^4 a^{10}-15 z^2 a^{10}+5 a^{10}-6 z^7 a^9+15 z^5 a^9-21 z^3 a^9+17 z a^9-5 a^9 z^{-1} -z^8 a^8-4 z^6 a^8+14 z^4 a^8-13 z^2 a^8+5 a^8-3 z^7 a^7+8 z^5 a^7-10 z^3 a^7+9 z a^7-3 a^7 z^{-1} -2 z^6 a^6+4 z^4 a^6-z^2 a^6-z^5 a^5+3 z^3 a^5-2 z a^5 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-4         11
-6        21-1
-8       3  3
-10      32  -1
-12     53   2
-14    34    1
-16   44     0
-18  13      2
-20 14       -3
-22 1        1
-241         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9a5.gif

L9a5

L9a7.gif

L9a7