# L9a6

Jump to: navigation, search

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L9a6 at Knotilus! L9a6 is $9^2_{29}$ in the Rolfsen table of links.

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $\frac{-2 u v^4+3 u v^3-3 u v^2+2 u v-u-v^5+2 v^4-3 v^3+3 v^2-2 v}{\sqrt{u} v^{5/2}}$ (db) Jones polynomial $-\frac{5}{q^{9/2}}+\frac{2}{q^{7/2}}-\frac{1}{q^{5/2}}+\frac{1}{q^{23/2}}-\frac{2}{q^{21/2}}+\frac{5}{q^{19/2}}-\frac{7}{q^{17/2}}+\frac{7}{q^{15/2}}-\frac{8}{q^{13/2}}+\frac{6}{q^{11/2}}$ (db) Signature -5 (db) HOMFLY-PT polynomial $a^{11} (-z)-2 a^{11} z^{-1} +3 a^9 z^3+8 a^9 z+5 a^9 z^{-1} -2 a^7 z^5-7 a^7 z^3-7 a^7 z-3 a^7 z^{-1} -a^5 z^5-3 a^5 z^3-2 a^5 z$ (db) Kauffman polynomial $-z^4 a^{14}+2 z^2 a^{14}-a^{14}-2 z^5 a^{13}+2 z^3 a^{13}-3 z^6 a^{12}+3 z^4 a^{12}-z^2 a^{12}-3 z^7 a^{11}+4 z^5 a^{11}-6 z^3 a^{11}+6 z a^{11}-2 a^{11} z^{-1} -z^8 a^{10}-5 z^6 a^{10}+14 z^4 a^{10}-15 z^2 a^{10}+5 a^{10}-6 z^7 a^9+15 z^5 a^9-21 z^3 a^9+17 z a^9-5 a^9 z^{-1} -z^8 a^8-4 z^6 a^8+14 z^4 a^8-13 z^2 a^8+5 a^8-3 z^7 a^7+8 z^5 a^7-10 z^3 a^7+9 z a^7-3 a^7 z^{-1} -2 z^6 a^6+4 z^4 a^6-z^2 a^6-z^5 a^5+3 z^3 a^5-2 z a^5$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-9-8-7-6-5-4-3-2-10χ
-4         11
-6        21-1
-8       3  3
-10      32  -1
-12     53   2
-14    34    1
-16   44     0
-18  13      2
-20 14       -3
-22 1        1
-241         -1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=-6$ $i=-4$ $r=-9$ ${\mathbb Z}$ $r=-8$ ${\mathbb Z}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-7$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-6$ ${\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=-5$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{3}$ $r=-4$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{5}$ $r=-3$ ${\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{3}$ $r=-2$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{3}$ $r=-1$ ${\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$ $r=0$ ${\mathbb Z}$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.

### Modifying This Page

 Read me first: Modifying Knot Pages See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top.