L9a7

From Knot Atlas
Jump to: navigation, search

L9a6.gif

L9a6

L9a8.gif

L9a8

Contents

L9a7.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9a7 at Knotilus!

L9a7 is 9^2_{17} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9a7's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X16,13,17,14 X14,7,15,8 X8,15,9,16 X18,11,5,12 X12,17,13,18 X2536 X4,9,1,10
Gauss code {1, -8, 2, -9}, {8, -1, 4, -5, 9, -2, 6, -7, 3, -4, 5, -3, 7, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L9a7 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{3 u v^2-4 u v+2 u+2 v^3-4 v^2+3 v}{\sqrt{u} v^{3/2}} (db)
Jones polynomial \frac{5}{q^{9/2}}-\frac{4}{q^{7/2}}+\frac{2}{q^{5/2}}-\frac{1}{q^{3/2}}+\frac{1}{q^{21/2}}-\frac{2}{q^{19/2}}+\frac{4}{q^{17/2}}-\frac{5}{q^{15/2}}+\frac{5}{q^{13/2}}-\frac{7}{q^{11/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial -a^{11} z^{-1} +3 a^9 z+2 a^9 z^{-1} -2 a^7 z^3-2 a^7 z-2 a^5 z^3-2 a^5 z-a^5 z^{-1} -a^3 z^3-a^3 z (db)
Kauffman polynomial -z^6 a^{12}+4 z^4 a^{12}-5 z^2 a^{12}+2 a^{12}-2 z^7 a^{11}+7 z^5 a^{11}-6 z^3 a^{11}+2 z a^{11}-a^{11} z^{-1} -z^8 a^{10}-z^6 a^{10}+13 z^4 a^{10}-15 z^2 a^{10}+5 a^{10}-5 z^7 a^9+15 z^5 a^9-12 z^3 a^9+5 z a^9-2 a^9 z^{-1} -z^8 a^8-3 z^6 a^8+13 z^4 a^8-10 z^2 a^8+3 a^8-3 z^7 a^7+5 z^5 a^7-2 z^3 a^7-z a^7-3 z^6 a^6+2 z^4 a^6+z^2 a^6-a^6-3 z^5 a^5+3 z^3 a^5-3 z a^5+a^5 z^{-1} -2 z^4 a^4+z^2 a^4-z^3 a^3+z a^3 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-2         11
-4        21-1
-6       2  2
-8      32  -1
-10     42   2
-12    24    2
-14   33     0
-16  12      1
-18 13       -2
-20 1        1
-221         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-5 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9a6.gif

L9a6

L9a8.gif

L9a8