L9n10

From Knot Atlas
Jump to: navigation, search

L9n9.gif

L9n9

L9n11.gif

L9n11

Contents

L9n10.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9n10 at Knotilus!

L9n10 is 9^2_{58} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9n10's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X7,14,8,15 X18,16,5,15 X16,12,17,11 X12,18,13,17 X13,8,14,9 X2536 X4,9,1,10
Gauss code {1, -8, 2, -9}, {8, -1, -3, 7, 9, -2, 5, -6, -7, 3, 4, -5, 6, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L9n10 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1) t(2)^3-t(2)^3-2 t(1) t(2)^2+3 t(2)^2+3 t(1) t(2)-2 t(2)-t(1)+1}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial -\frac{2}{q^{9/2}}+\frac{3}{q^{7/2}}+q^{5/2}-\frac{5}{q^{5/2}}-3 q^{3/2}+\frac{5}{q^{3/2}}+4 \sqrt{q}-\frac{5}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^5 z^{-1} +z^3 a^3-a^3 z^{-1} -z^5 a-3 z^3 a-3 z a+z^3 a^{-1} +z a^{-1} (db)
Kauffman polynomial 3 a^5 z^3-4 a^5 z+a^5 z^{-1} +a^4 z^6+a^4 z^2-a^4+a^3 z^7+2 a^3 z^3-3 a^3 z+a^3 z^{-1} +4 a^2 z^6-5 a^2 z^4+z^4 a^{-2} +2 a^2 z^2-z^2 a^{-2} +a z^7+3 a z^5+3 z^5 a^{-1} -6 a z^3-5 z^3 a^{-1} +2 a z+z a^{-1} +3 z^6-4 z^4 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-10123χ
6       1-1
4      2 2
2     21 -1
0    32  1
-2   33   0
-4  22    0
-6 13     2
-812      -1
-102       2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-4 {\mathbb Z}^{2} {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9n9.gif

L9n9

L9n11.gif

L9n11