L9n13

From Knot Atlas
Jump to: navigation, search

L9n12.gif

L9n12

L9n14.gif

L9n14

Contents

L9n13.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9n13 at Knotilus!

L9n13 is 9^2_{54} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9n13's Link Presentations]

Planar diagram presentation X8192 X11,17,12,16 X3,10,4,11 X15,3,16,2 X5,13,6,12 X6718 X9,14,10,15 X13,18,14,7 X17,4,18,5
Gauss code {1, 4, -3, 9, -5, -6}, {6, -1, -7, 3, -2, 5, -8, 7, -4, 2, -9, 8}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L9n13 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(2) t(1)-t(1)+1) (t(1) t(2)-t(2)+1)}{t(1) t(2)} (db)
Jones polynomial -\frac{2}{q^{9/2}}+\frac{3}{q^{7/2}}-\frac{4}{q^{5/2}}+\frac{2}{q^{3/2}}-\frac{1}{q^{13/2}}+\frac{2}{q^{11/2}}+\sqrt{q}-\frac{3}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial z^3 a^5+2 z a^5-z^5 a^3-4 z^3 a^3-4 z a^3+a^3 z^{-1} +z^3 a+z a-a z^{-1} (db)
Kauffman polynomial -z^5 a^7+3 z^3 a^7-z a^7-2 z^6 a^6+7 z^4 a^6-5 z^2 a^6-z^7 a^5+2 z^5 a^5+z a^5-3 z^6 a^4+9 z^4 a^4-7 z^2 a^4-z^7 a^3+3 z^5 a^3-6 z^3 a^3+4 z a^3+a^3 z^{-1} -z^6 a^2+2 z^4 a^2-3 z^2 a^2-a^2-3 z^3 a+2 z a+a z^{-1} -z^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-101χ
2       1-1
0      2 2
-2     12 1
-4    31  2
-6   12   1
-8  12    -1
-10 11     0
-12 1      -1
-141       1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9n12.gif

L9n12

L9n14.gif

L9n14