L9n16

From Knot Atlas
Jump to: navigation, search

L9n15.gif

L9n15

L9n17.gif

L9n17

Contents

L9n16.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9n16 at Knotilus!

L9n16 is 9^2_{51} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9n16's Link Presentations]

Planar diagram presentation X8192 X11,17,12,16 X3,10,4,11 X2,15,3,16 X12,5,13,6 X6718 X14,10,15,9 X18,14,7,13 X17,4,18,5
Gauss code {1, -4, -3, 9, 5, -6}, {6, -1, 7, 3, -2, -5, 8, -7, 4, 2, -9, -8}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L9n16 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u^2 v+u v^4-u v^3+u v^2-u v+u+v^3}{u v^2} (db)
Jones polynomial -\frac{2}{q^{9/2}}+\frac{2}{q^{7/2}}-\frac{3}{q^{5/2}}+\frac{2}{q^{3/2}}-\frac{1}{q^{13/2}}+\frac{1}{q^{11/2}}+\sqrt{q}-\frac{2}{\sqrt{q}} (db)
Signature -1 (db)
HOMFLY-PT polynomial z^3 a^5+3 z a^5+2 a^5 z^{-1} -z^5 a^3-5 z^3 a^3-8 z a^3-3 a^3 z^{-1} +z^3 a+2 z a+a z^{-1} (db)
Kauffman polynomial -z^5 a^7+4 z^3 a^7-3 z a^7-z^6 a^6+3 z^4 a^6-z^2 a^6-z^7 a^5+4 z^5 a^5-6 z^3 a^5+6 z a^5-2 a^5 z^{-1} -2 z^6 a^4+7 z^4 a^4-8 z^2 a^4+3 a^4-z^7 a^3+5 z^5 a^3-12 z^3 a^3+11 z a^3-3 a^3 z^{-1} -z^6 a^2+4 z^4 a^2-8 z^2 a^2+3 a^2-2 z^3 a+2 z a-a z^{-1} -z^2+1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-101χ
2       1-1
0      1 1
-2     22 0
-4    1   1
-6   12   1
-8  11    0
-10  1     1
-1211      0
-141       1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0
r=-6 {\mathbb Z} {\mathbb Z}
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{2} {\mathbb Z}
r=1 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9n15.gif

L9n15

L9n17.gif

L9n17