L9n20

From Knot Atlas
Jump to: navigation, search

L9n19.gif

L9n19

L9n21.gif

L9n21

Contents

L9n20.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9n20 at Knotilus!

L9n20 is 9^3_{16} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9n20's Link Presentations]

Planar diagram presentation X6172 X3,11,4,10 X7,15,8,14 X13,5,14,8 X11,17,12,16 X15,9,16,18 X17,13,18,12 X2536 X9,1,10,4
Gauss code {1, -8, -2, 9}, {8, -1, -3, 4}, {-9, 2, -5, 7, -4, 3, -6, 5, -7, 6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L9n20 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-2 u v w^2+2 u v w-u v+u w^2-u w+v w^2-v w+w^3-2 w^2+2 w}{\sqrt{u} \sqrt{v} w^{3/2}} (db)
Jones polynomial -q^8+2 q^7-4 q^6+5 q^5-4 q^4+6 q^3-3 q^2+3 q (db)
Signature 2 (db)
HOMFLY-PT polynomial -2 z^4 a^{-4} +3 z^2 a^{-2} -7 z^2 a^{-4} +3 z^2 a^{-6} +5 a^{-2} -10 a^{-4} +6 a^{-6} - a^{-8} +2 a^{-2} z^{-2} -5 a^{-4} z^{-2} +4 a^{-6} z^{-2} - a^{-8} z^{-2} (db)
Kauffman polynomial z^7 a^{-5} +z^7 a^{-7} +4 z^6 a^{-4} +6 z^6 a^{-6} +2 z^6 a^{-8} +3 z^5 a^{-3} +5 z^5 a^{-5} +3 z^5 a^{-7} +z^5 a^{-9} -11 z^4 a^{-4} -16 z^4 a^{-6} -5 z^4 a^{-8} -6 z^3 a^{-3} -18 z^3 a^{-5} -15 z^3 a^{-7} -3 z^3 a^{-9} +6 z^2 a^{-2} +18 z^2 a^{-4} +15 z^2 a^{-6} +3 z^2 a^{-8} +11 z a^{-3} +21 z a^{-5} +13 z a^{-7} +3 z a^{-9} -7 a^{-2} -14 a^{-4} -10 a^{-6} -2 a^{-8} -5 a^{-3} z^{-1} -9 a^{-5} z^{-1} -5 a^{-7} z^{-1} - a^{-9} z^{-1} +2 a^{-2} z^{-2} +5 a^{-4} z^{-2} +4 a^{-6} z^{-2} + a^{-8} z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
01234567χ
17       1-1
15      1 1
13     31 -2
11    21  1
9   34   1
7  31    2
5  3     3
333      0
13       3
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=0 {\mathbb Z}^{3} {\mathbb Z}^{3}
r=1 {\mathbb Z}^{3}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9n19.gif

L9n19

L9n21.gif

L9n21