L9n26

From Knot Atlas
Jump to: navigation, search

L9n25.gif

L9n25

L9n27.gif

L9n27

Contents

L9n26.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9n26 at Knotilus!

L9n26 is 9^3_{19} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9n26's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X11,17,12,16 X7,14,8,15 X13,8,14,9 X15,13,16,18 X17,5,18,12 X2536 X4,9,1,10
Gauss code {1, -8, 2, -9}, {-5, 4, -6, 3, -7, 6}, {8, -1, -4, 5, 9, -2, -3, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L9n26 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(2)-1) (t(3)-1) \left(t(3)^2-t(1)\right)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} (db)
Jones polynomial  q^{-6} - q^{-5} +3 q^{-4} -2 q^{-3} +3 q^{-2} -q-2 q^{-1} +3 (db)
Signature 0 (db)
HOMFLY-PT polynomial a^6 z^{-2} +a^6-2 a^4 z^2-2 a^4 z^{-2} -4 a^4+a^2 z^4+3 a^2 z^2+a^2 z^{-2} +3 a^2-z^2 (db)
Kauffman polynomial a^6 z^6-5 a^6 z^4+8 a^6 z^2+a^6 z^{-2} -5 a^6+a^5 z^7-3 a^5 z^5-a^5 z^3+5 a^5 z-2 a^5 z^{-1} +4 a^4 z^6-17 a^4 z^4+20 a^4 z^2+2 a^4 z^{-2} -10 a^4+a^3 z^7-a^3 z^5-6 a^3 z^3+7 a^3 z-2 a^3 z^{-1} +3 a^2 z^6-12 a^2 z^4+15 a^2 z^2+a^2 z^{-2} -7 a^2+2 a z^5-5 a z^3+3 a z+z a^{-1} +3 z^2-1 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-101χ
3       1-1
1      2 2
-1     23 1
-3    111 1
-5   12   1
-7  21    1
-9 13     2
-11        0
-131       1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1 i=1
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{3} {\mathbb Z}^{2}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z} {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9n25.gif

L9n25

L9n27.gif

L9n27