L9n28

From Knot Atlas
Jump to: navigation, search

L9n27.gif

L9n27

L10a1.gif

L10a1

Contents

L9n28.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9n28 at Knotilus!

L9n28 is 9^3_{20} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9n28's Link Presentations]

Planar diagram presentation X6172 X12,7,13,8 X4,13,1,14 X18,10,15,9 X8493 X5,17,6,16 X17,5,18,14 X10,16,11,15 X2,12,3,11
Gauss code {1, -9, 5, -3}, {8, 6, -7, -4}, {-6, -1, 2, -5, 4, -8, 9, -2, 3, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation L9n28 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (w-1)^2 (v w+1)}{\sqrt{u} \sqrt{v} w^{3/2}} (db)
Jones polynomial 3 q^5-4 q^4+6 q^3-5 q^2+6 q-4+3 q^{-1} - q^{-2} (db)
Signature 2 (db)
HOMFLY-PT polynomial z^6 a^{-2} +4 z^4 a^{-2} -z^4 a^{-4} -z^4+5 z^2 a^{-2} -3 z^2 a^{-4} -2 z^2+3 a^{-2} -4 a^{-4} + a^{-6} + a^{-2} z^{-2} -2 a^{-4} z^{-2} + a^{-6} z^{-2} (db)
Kauffman polynomial 2 z^7 a^{-1} +2 z^7 a^{-3} +8 z^6 a^{-2} +5 z^6 a^{-4} +3 z^6+a z^5-z^5 a^{-1} +z^5 a^{-3} +3 z^5 a^{-5} -21 z^4 a^{-2} -13 z^4 a^{-4} -8 z^4-2 a z^3-7 z^3 a^{-1} -8 z^3 a^{-3} -3 z^3 a^{-5} +17 z^2 a^{-2} +18 z^2 a^{-4} +6 z^2 a^{-6} +5 z^2+a z+3 z a^{-1} +7 z a^{-3} +5 z a^{-5} -7 a^{-2} -10 a^{-4} -5 a^{-6} -1-2 a^{-3} z^{-1} -2 a^{-5} z^{-1} + a^{-2} z^{-2} +2 a^{-4} z^{-2} + a^{-6} z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-3-2-101234χ
11       33
9      32-1
7     31 2
5    23  1
3   43   1
1  24    2
-1 12     -1
-3 2      2
-51       -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9n27.gif

L9n27

L10a1.gif

L10a1