L9n3

From Knot Atlas
Jump to: navigation, search

L9n2.gif

L9n2

L9n4.gif

L9n4

Contents

L9n3.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9n3 at Knotilus!

L9n3 is 9^2_{47} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9n3's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X4,15,1,16 X5,10,6,11 X8493 X11,18,12,5 X17,12,18,13 X9,16,10,17 X2,14,3,13
Gauss code {1, -9, 5, -3}, {-4, -1, 2, -5, -8, 4, -6, 7, 9, -2, 3, 8, -7, 6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L9n3 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(u-1) (v-1)}{\sqrt{u} \sqrt{v}} (db)
Jones polynomial -\frac{1}{\sqrt{q}}-\frac{2}{q^{5/2}}+\frac{1}{q^{7/2}}-\frac{1}{q^{9/2}}+\frac{1}{q^{11/2}}-\frac{1}{q^{13/2}}+\frac{1}{q^{15/2}} (db)
Signature -1 (db)
HOMFLY-PT polynomial a^7 (-z)-a^7 z^{-1} +a^5 z^3+3 a^5 z+2 a^5 z^{-1} -a^3 z-a z-a z^{-1} (db)
Kauffman polynomial a^8 z^6-5 a^8 z^4+6 a^8 z^2-2 a^8+a^7 z^7-5 a^7 z^5+6 a^7 z^3-2 a^7 z+a^7 z^{-1} +2 a^6 z^6-10 a^6 z^4+13 a^6 z^2-5 a^6+a^5 z^7-5 a^5 z^5+7 a^5 z^3-5 a^5 z+2 a^5 z^{-1} +a^4 z^6-5 a^4 z^4+7 a^4 z^2-3 a^4+a^3 z^3-2 a^3 z+a^2+a z-a z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-10χ
0       11
-2      121
-4     1 12
-6    12  1
-8   11   0
-10   11   0
-12 11     0
-14        0
-161       -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2 i=0
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z} {\mathbb Z}^{2} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9n2.gif

L9n2

L9n4.gif

L9n4