T(25,2): Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 5: Line 5:
<span id="top"></span>
<span id="top"></span>


{{Knot Navigation Links|prev=T(6,5)|next=T(13,3)|imageext=jpg}}
{{Knot Navigation Links|ext=jpg}}


{| align=left
{| align=left
|- valign=top
|- valign=top
|[[Image:T(25,2).jpg]]
|[[Image:{{PAGENAME}}.jpg]]
|Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20,21,-22,23,-24,25,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17,18,-19,20,-21,22,-23,24,-25,1,-2,3/goTop.html T(25,2)'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]!
|Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20,21,-22,23,-24,25,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17,18,-19,20,-21,22,-23,24,-25,1,-2,3/goTop.html {{PAGENAME}}'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]!


Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/25.2.html T(25,2)'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]!
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/25.2.html {{PAGENAME}}'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]!


{{:T(25,2) Quick Notes}}
{{:{{PAGENAME}} Quick Notes}}
|}
|}


<br style="clear:both" />
<br style="clear:both" />


{{:T(25,2) Further Notes and Views}}
{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}


===Knot presentations===
===Knot presentations===
Line 28: Line 30:
|-
|-
|'''[[Gauss Codes|Gauss code]]'''
|'''[[Gauss Codes|Gauss code]]'''
|style="padding-left: 1em;" | {-4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -22, 23, -24, 25, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 1, -2, 3}
|style="padding-left: 1em;" | <math>\{-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20,21,-22,23,-24,25,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17,18,-19,20,-21,22,-23,24,-25,1,-2,3\}</math>
|-
|-
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]'''
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]'''
Line 34: Line 36:
|}
|}


{{Polynomial Invariants|name=T(25,2)}}
{{Polynomial Invariants}}
{{Vassiliev Invariants}}

===[[Finite Type (Vassiliev) Invariants|Vassiliev invariants]]===
{| style="margin-left: 1em;"
|-
|'''V<sub>2</sub> and V<sub>3</sub>'''
|style="padding-left: 1em;" | {0, 650}
|}


===[[Khovanov Homology]]===
===[[Khovanov Homology]]===


The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>24 is the signature of T(25,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.


<center><table border=1>
<center><table border=1>
<tr align=center>
<tr align=center>
<td width=6.66667%><table cellpadding=0 cellspacing=0>
<td width=6.66667%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=3.33333%>0</td ><td width=3.33333%>1</td ><td width=3.33333%>2</td ><td width=3.33333%>3</td ><td width=3.33333%>4</td ><td width=3.33333%>5</td ><td width=3.33333%>6</td ><td width=3.33333%>7</td ><td width=3.33333%>8</td ><td width=3.33333%>9</td ><td width=3.33333%>10</td ><td width=3.33333%>11</td ><td width=3.33333%>12</td ><td width=3.33333%>13</td ><td width=3.33333%>14</td ><td width=3.33333%>15</td ><td width=3.33333%>16</td ><td width=3.33333%>17</td ><td width=3.33333%>18</td ><td width=3.33333%>19</td ><td width=3.33333%>20</td ><td width=3.33333%>21</td ><td width=3.33333%>22</td ><td width=3.33333%>23</td ><td width=3.33333%>24</td ><td width=3.33333%>25</td ><td width=6.66667%>&chi;</td></tr>
<td width=3.33333%>0</td ><td width=3.33333%>1</td ><td width=3.33333%>2</td ><td width=3.33333%>3</td ><td width=3.33333%>4</td ><td width=3.33333%>5</td ><td width=3.33333%>6</td ><td width=3.33333%>7</td ><td width=3.33333%>8</td ><td width=3.33333%>9</td ><td width=3.33333%>10</td ><td width=3.33333%>11</td ><td width=3.33333%>12</td ><td width=3.33333%>13</td ><td width=3.33333%>14</td ><td width=3.33333%>15</td ><td width=3.33333%>16</td ><td width=3.33333%>17</td ><td width=3.33333%>18</td ><td width=3.33333%>19</td ><td width=3.33333%>20</td ><td width=3.33333%>21</td ><td width=3.33333%>22</td ><td width=3.33333%>23</td ><td width=3.33333%>24</td ><td width=3.33333%>25</td ><td width=6.66667%>&chi;</td></tr>
<tr align=center><td>75</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>75</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>73</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>0</td></tr>
<tr align=center><td>73</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>0</td></tr>
Line 91: Line 87:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 19, 2005, 13:11:25)...</pre></td></tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[25, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[25, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>25</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>25</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[25, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[25, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[23, 49, 24, 48], X[49, 25, 50, 24], X[25, 1, 26, 50],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[23, 49, 24, 48], X[49, 25, 50, 24], X[25, 1, 26, 50],
X[1, 27, 2, 26], X[27, 3, 28, 2], X[3, 29, 4, 28], X[29, 5, 30, 4],
X[1, 27, 2, 26], X[27, 3, 28, 2], X[3, 29, 4, 28], X[29, 5, 30, 4],
Line 110: Line 106:
X[21, 47, 22, 46], X[47, 23, 48, 22]]</nowiki></pre></td></tr>
X[21, 47, 22, 46], X[47, 23, 48, 22]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[25, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[25, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18,
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18,
19, -20, 21, -22, 23, -24, 25, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10,
19, -20, 21, -22, 23, -24, 25, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10,
Line 118: Line 114:
1, -2, 3]</nowiki></pre></td></tr>
1, -2, 3]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[25, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[25, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1}]</nowiki></pre></td></tr>
1, 1, 1, 1}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[25, 2]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[25, 2]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 -11 -10 -9 -8 -7 -6 -5 -4 -3
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 -11 -10 -9 -8 -7 -6 -5 -4 -3
1 + t - t + t - t + t - t + t - t + t - t +
1 + t - t + t - t + t - t + t - t + t - t +
Line 129: Line 125:
t - - - t + t - t + t - t + t - t + t - t + t - t + t
t - - - t + t - t + t - t + t - t + t - t + t - t + t
t</nowiki></pre></td></tr>
t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[25, 2]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[25, 2]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12
1 + 78 z + 1001 z + 5005 z + 12870 z + 19448 z + 18564 z +
1 + 78 z + 1001 z + 5005 z + 12870 z + 19448 z + 18564 z +
14 16 18 20 22 24
14 16 18 20 22 24
11628 z + 4845 z + 1330 z + 231 z + 23 z + z</nowiki></pre></td></tr>
11628 z + 4845 z + 1330 z + 231 z + 23 z + z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[25, 2]], KnotSignature[TorusKnot[25, 2]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[25, 2]], KnotSignature[TorusKnot[25, 2]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{25, 24}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{25, 24}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[25, 2]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[25, 2]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 12 14 15 16 17 18 19 20 21 22 23 24
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 12 14 15 16 17 18 19 20 21 22 23 24
q + q - q + q - q + q - q + q - q + q - q + q -
q + q - q + q - q + q - q + q - q + q - q + q -
Line 148: Line 144:
36 37
36 37
q - q</nowiki></pre></td></tr>
q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>


<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[25, 2]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[25, 2]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[25, 2]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[25, 2]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[25, 2]], Vassiliev[3][TorusKnot[25, 2]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[25, 2]], Vassiliev[3][TorusKnot[25, 2]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 650}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 650}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[25, 2]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[25, 2]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 23 25 27 2 31 3 31 4 35 5 35 6 39 7
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 23 25 27 2 31 3 31 4 35 5 35 6 39 7
q + q + q t + q t + q t + q t + q t + q t +
q + q + q t + q t + q t + q t + q t + q t +

Revision as of 20:25, 27 August 2005


T(6,5).jpg

T(6,5)

T(13,3).jpg

T(13,3)

T(25,2).jpg Visit T(25,2)'s page at Knotilus!

Visit T(25,2)'s page at the original Knot Atlas!

T(25,2) Quick Notes


T(25,2) Further Notes and Views

Knot presentations

Planar diagram presentation X23,49,24,48 X49,25,50,24 X25,1,26,50 X1,27,2,26 X27,3,28,2 X3,29,4,28 X29,5,30,4 X5,31,6,30 X31,7,32,6 X7,33,8,32 X33,9,34,8 X9,35,10,34 X35,11,36,10 X11,37,12,36 X37,13,38,12 X13,39,14,38 X39,15,40,14 X15,41,16,40 X41,17,42,16 X17,43,18,42 X43,19,44,18 X19,45,20,44 X45,21,46,20 X21,47,22,46 X47,23,48,22
Gauss code -4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -22, 23, -24, 25, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 1, -2, 3
Dowker-Thistlethwaite code 26 28 30 32 34 36 38 40 42 44 46 48 50 2 4 6 8 10 12 14 16 18 20 22 24
Conway Notation Data:T(25,2)/Conway Notation

Knot presentations

Planar diagram presentation X23,49,24,48 X49,25,50,24 X25,1,26,50 X1,27,2,26 X27,3,28,2 X3,29,4,28 X29,5,30,4 X5,31,6,30 X31,7,32,6 X7,33,8,32 X33,9,34,8 X9,35,10,34 X35,11,36,10 X11,37,12,36 X37,13,38,12 X13,39,14,38 X39,15,40,14 X15,41,16,40 X41,17,42,16 X17,43,18,42 X43,19,44,18 X19,45,20,44 X45,21,46,20 X21,47,22,46 X47,23,48,22
Gauss code
Dowker-Thistlethwaite code 26 28 30 32 34 36 38 40 42 44 46 48 50 2 4 6 8 10 12 14 16 18 20 22 24

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 25, 24 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(25,2)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(25,2)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3: (78, 650)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:T(25,2)/V 2,1 Data:T(25,2)/V 3,1 Data:T(25,2)/V 4,1 Data:T(25,2)/V 4,2 Data:T(25,2)/V 4,3 Data:T(25,2)/V 5,1 Data:T(25,2)/V 5,2 Data:T(25,2)/V 5,3 Data:T(25,2)/V 5,4 Data:T(25,2)/V 6,1 Data:T(25,2)/V 6,2 Data:T(25,2)/V 6,3 Data:T(25,2)/V 6,4 Data:T(25,2)/V 6,5 Data:T(25,2)/V 6,6 Data:T(25,2)/V 6,7 Data:T(25,2)/V 6,8 Data:T(25,2)/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 24 is the signature of T(25,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
012345678910111213141516171819202122232425χ
75                         1-1
73                          0
71                       11 0
69                          0
67                     11   0
65                          0
63                   11     0
61                          0
59                 11       0
57                          0
55               11         0
53                          0
51             11           0
49                          0
47           11             0
45                          0
43         11               0
41                          0
39       11                 0
37                          0
35     11                   0
33                          0
31   11                     0
29                          0
27  1                       1
251                         1
231                         1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[TorusKnot[25, 2]]
Out[2]=  
25
In[3]:=
PD[TorusKnot[25, 2]]
Out[3]=  
PD[X[23, 49, 24, 48], X[49, 25, 50, 24], X[25, 1, 26, 50], 
 X[1, 27, 2, 26], X[27, 3, 28, 2], X[3, 29, 4, 28], X[29, 5, 30, 4], 

 X[5, 31, 6, 30], X[31, 7, 32, 6], X[7, 33, 8, 32], X[33, 9, 34, 8], 

 X[9, 35, 10, 34], X[35, 11, 36, 10], X[11, 37, 12, 36], 

 X[37, 13, 38, 12], X[13, 39, 14, 38], X[39, 15, 40, 14], 

 X[15, 41, 16, 40], X[41, 17, 42, 16], X[17, 43, 18, 42], 

 X[43, 19, 44, 18], X[19, 45, 20, 44], X[45, 21, 46, 20], 

X[21, 47, 22, 46], X[47, 23, 48, 22]]
In[4]:=
GaussCode[TorusKnot[25, 2]]
Out[4]=  
GaussCode[-4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 
 19, -20, 21, -22, 23, -24, 25, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, 

 -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 

1, -2, 3]
In[5]:=
BR[TorusKnot[25, 2]]
Out[5]=  
BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
   1, 1, 1, 1}]
In[6]:=
alex = Alexander[TorusKnot[25, 2]][t]
Out[6]=  
     -12    -11    -10    -9    -8    -7    -6    -5    -4    -3

1 + t - t + t - t + t - t + t - t + t - t +

  -2   1        2    3    4    5    6    7    8    9    10    11    12
 t   - - - t + t  - t  + t  - t  + t  - t  + t  - t  + t   - t   + t
t
In[7]:=
Conway[TorusKnot[25, 2]][z]
Out[7]=  
        2         4         6          8          10          12

1 + 78 z + 1001 z + 5005 z + 12870 z + 19448 z + 18564 z +

        14         16         18        20       22    24
11628 z + 4845 z + 1330 z + 231 z + 23 z + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{}
In[9]:=
{KnotDet[TorusKnot[25, 2]], KnotSignature[TorusKnot[25, 2]]}
Out[9]=  
{25, 24}
In[10]:=
J=Jones[TorusKnot[25, 2]][q]
Out[10]=  
 12    14    15    16    17    18    19    20    21    22    23    24

q + q - q + q - q + q - q + q - q + q - q + q -

  25    26    27    28    29    30    31    32    33    34    35
 q   + q   - q   + q   - q   + q   - q   + q   - q   + q   - q   + 

  36    37
q - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{}
In[12]:=
A2Invariant[TorusKnot[25, 2]][q]
Out[12]=  
NotAvailable
In[13]:=
Kauffman[TorusKnot[25, 2]][a, z]
Out[13]=  
NotAvailable
In[14]:=
{Vassiliev[2][TorusKnot[25, 2]], Vassiliev[3][TorusKnot[25, 2]]}
Out[14]=  
{0, 650}
In[15]:=
Kh[TorusKnot[25, 2]][q, t]
Out[15]=  
 23    25    27  2    31  3    31  4    35  5    35  6    39  7

q + q + q t + q t + q t + q t + q t + q t +

  39  8    43  9    43  10    47  11    47  12    51  13    51  14
 q   t  + q   t  + q   t   + q   t   + q   t   + q   t   + q   t   + 

  55  15    55  16    59  17    59  18    63  19    63  20    67  21
 q   t   + q   t   + q   t   + q   t   + q   t   + q   t   + q   t   + 

  67  22    71  23    71  24    75  25
q t + q t + q t + q t