In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 103]] |
Out[2]= | PD[X[6, 2, 7, 1], X[18, 6, 19, 5], X[20, 13, 1, 14], X[16, 7, 17, 8],
X[10, 3, 11, 4], X[4, 11, 5, 12], X[14, 9, 15, 10], X[8, 15, 9, 16],
X[12, 19, 13, 20], X[2, 18, 3, 17]] |
In[3]:= | GaussCode[Knot[10, 103]] |
Out[3]= | GaussCode[1, -10, 5, -6, 2, -1, 4, -8, 7, -5, 6, -9, 3, -7, 8, -4, 10,
-2, 9, -3] |
In[4]:= | DTCode[Knot[10, 103]] |
Out[4]= | DTCode[6, 10, 18, 16, 14, 4, 20, 8, 2, 12] |
In[5]:= | br = BR[Knot[10, 103]] |
Out[5]= | BR[4, {-1, -1, -2, 1, 3, -2, -2, 3, -2, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 103]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 103]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 103]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 3, 3, 3, NotAvailable, 2} |
In[10]:= | alex = Alexander[Knot[10, 103]][t] |
Out[10]= | 2 8 17 2 3
-21 + -- - -- + -- + 17 t - 8 t + 2 t
3 2 t
t t |
In[11]:= | Conway[Knot[10, 103]][z] |
Out[11]= | 2 4 6
1 + 3 z + 4 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 40], Knot[10, 103]} |
In[13]:= | {KnotDet[Knot[10, 103]], KnotSignature[Knot[10, 103]]} |
Out[13]= | {75, -2} |
In[14]:= | Jones[Knot[10, 103]][q] |
Out[14]= | -8 3 6 9 12 13 11 10 2
-6 - q + -- - -- + -- - -- + -- - -- + -- + 3 q - q
7 6 5 4 3 2 q
q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 40], Knot[10, 103]} |
In[16]:= | A2Invariant[Knot[10, 103]][q] |
Out[16]= | -24 -22 -20 -18 2 3 -12 -8 4 -4
-1 - q + q - q - q + --- - --- + q + q + -- - q +
16 14 6
q q q
3 2 4 6
-- - q + q - q
2
q |
In[17]:= | HOMFLYPT[Knot[10, 103]][a, z] |
Out[17]= | 2 6 2 2 2 4 2 6 2 4 2 4
-1 + 3 a - a - 2 z + 4 a z + 3 a z - 2 a z - z + 3 a z +
4 4 6 4 2 6 4 6
3 a z - a z + a z + a z |
In[18]:= | Kauffman[Knot[10, 103]][a, z] |
Out[18]= | 2 6 z 3 5 7 2 2 2
-1 - 3 a + a + - + a z - 2 a z - 6 a z - 4 a z + 3 z + 2 a z -
a
3
4 2 6 2 8 2 2 z 3 3 3 5 3
8 a z - 6 a z + a z - ---- - 2 a z + 9 a z + 21 a z +
a
5
7 3 9 3 4 4 4 6 4 8 4 z
10 a z - 2 a z - 6 z + 25 a z + 13 a z - 6 a z + -- -
a
5 3 5 5 5 7 5 9 5 6 2 6
5 a z - 9 a z - 16 a z - 12 a z + a z + 3 z - 5 a z -
4 6 6 6 8 6 7 3 7 5 7
23 a z - 12 a z + 3 a z + 4 a z + 2 a z + 3 a z +
7 7 2 8 4 8 6 8 3 9 5 9
5 a z + 4 a z + 9 a z + 5 a z + 2 a z + 2 a z |
In[19]:= | {Vassiliev[2][Knot[10, 103]], Vassiliev[3][Knot[10, 103]]} |
Out[19]= | {3, -4} |
In[20]:= | Kh[Knot[10, 103]][q, t] |
Out[20]= | 5 6 1 2 1 4 2 5 4
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- +
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4
q q t q t q t q t q t q t q t
7 5 6 7 5 6 2 t 2
----- + ----- + ----- + ----- + ---- + ---- + --- + 4 q t + q t +
9 3 7 3 7 2 5 2 5 3 q
q t q t q t q t q t q t
3 2 5 3
2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 103], 2][q] |
Out[21]= | -23 3 2 7 17 6 30 46 3 75
-44 + q - --- + --- + --- - --- + --- + --- - --- - --- + --- -
22 21 20 19 18 17 16 15 14
q q q q q q q q q
72 30 122 81 61 141 67 75 123 35 69 78 7
--- - --- + --- - --- - -- + --- - -- - -- + --- - -- - -- + -- - - +
13 12 11 10 9 8 7 6 5 4 3 2 q
q q q q q q q q q q q q
2 3 4 5 6 7
32 q + 3 q - 16 q + 8 q + q - 3 q + q |