In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 28]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[13, 19, 14, 18], X[5, 15, 6, 14],
X[17, 7, 18, 6], X[7, 17, 8, 16], X[15, 9, 16, 8], X[11, 1, 12, 20],
X[19, 13, 20, 12], X[9, 2, 10, 3]] |
In[3]:= | GaussCode[Knot[10, 28]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -4, 5, -6, 7, -10, 2, -8, 9, -3, 4, -7, 6, -5,
3, -9, 8] |
In[4]:= | DTCode[Knot[10, 28]] |
Out[4]= | DTCode[4, 10, 14, 16, 2, 20, 18, 8, 6, 12] |
In[5]:= | br = BR[Knot[10, 28]] |
Out[5]= | BR[5, {1, 1, 2, -1, 2, 2, 3, -2, -4, 3, -4, -4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 28]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 28]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 28]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 28]][t] |
Out[10]= | 4 13 2
19 + -- - -- - 13 t + 4 t
2 t
t |
In[11]:= | Conway[Knot[10, 28]][z] |
Out[11]= | 2 4
1 + 3 z + 4 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 28], Knot[10, 37]} |
In[13]:= | {KnotDet[Knot[10, 28]], KnotSignature[Knot[10, 28]]} |
Out[13]= | {53, 0} |
In[14]:= | Jones[Knot[10, 28]][q] |
Out[14]= | -3 3 5 2 3 4 5 6 7
7 - q + -- - - - 8 q + 9 q - 7 q + 6 q - 4 q + 2 q - q
2 q
q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 28]} |
In[16]:= | A2Invariant[Knot[10, 28]][q] |
Out[16]= | -10 -8 -6 2 -2 4 6 8 14 16 22
-1 - q + q + q - -- + q + 2 q + q + 3 q + q - 2 q - q
4
q |
In[17]:= | HOMFLYPT[Knot[10, 28]][a, z] |
Out[17]= | 2 2 2 4 4
-6 3 z z 4 z 2 2 4 z 2 z
-1 - a + -- - -- + -- + ---- - a z + z + -- + ----
2 6 4 2 4 2
a a a a a a |
In[18]:= | Kauffman[Knot[10, 28]][a, z] |
Out[18]= | 2 2
-6 3 4 z 6 z 2 z z 2 5 z 10 z
-1 + a - -- - --- - --- - --- + - + a z + 4 z - ---- + ----- -
2 7 5 3 a 6 2
a a a a a a
3 3 3 3 4
2 2 8 z 18 z 13 z 2 z 3 3 3 4 12 z
a z + ---- + ----- + ----- - ---- - 4 a z + a z - 8 z + ----- +
7 5 3 a 6
a a a a
4 4 5 5 5 5
11 z 12 z 2 4 5 z 12 z 18 z 6 z 5
----- - ----- + 3 a z - ---- - ----- - ----- - ---- + 5 a z +
4 2 7 5 3 a
a a a a a
6 6 6 7 7 7 8 8 8
6 9 z 16 z z z 4 z 5 z 2 z 5 z 3 z
6 z - ---- - ----- - -- + -- + ---- + ---- + ---- + ---- + ---- +
6 4 2 7 3 a 6 4 2
a a a a a a a a
9 9
z z
-- + --
5 3
a a |
In[19]:= | {Vassiliev[2][Knot[10, 28]], Vassiliev[3][Knot[10, 28]]} |
Out[19]= | {3, 4} |
In[20]:= | Kh[Knot[10, 28]][q, t] |
Out[20]= | 4 1 2 1 3 2 3
- + 4 q + ----- + ----- + ----- + ---- + --- + 5 q t + 3 q t +
q 7 3 5 2 3 2 3 q t
q t q t q t q t
3 2 5 2 5 3 7 3 7 4 9 4 9 5
4 q t + 5 q t + 3 q t + 4 q t + 3 q t + 3 q t + q t +
11 5 11 6 13 6 15 7
3 q t + q t + q t + q t |
In[21]:= | ColouredJones[Knot[10, 28], 2][q] |
Out[21]= | -9 3 2 5 13 9 10 28 21 2
15 + q - -- + -- + -- - -- + -- + -- - -- + -- - 44 q + 29 q +
8 7 6 5 4 3 2 q
q q q q q q q
3 4 5 6 7 8 9 10
23 q - 54 q + 26 q + 32 q - 53 q + 16 q + 34 q - 41 q +
11 12 13 14 15 16 17 18
4 q + 29 q - 24 q - 4 q + 18 q - 9 q - 5 q + 7 q -
19 20 21
q - 2 q + q |