K11a344

From Knot Atlas
Revision as of 11:59, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

K11a343.gif

K11a343

K11a345.gif

K11a345

K11a344.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a344 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X14,4,15,3 X18,6,19,5 X16,7,17,8 X20,10,21,9 X22,12,1,11 X4,14,5,13 X8,15,9,16 X2,18,3,17 X12,20,13,19 X10,22,11,21
Gauss code 1, -9, 2, -7, 3, -1, 4, -8, 5, -11, 6, -10, 7, -2, 8, -4, 9, -3, 10, -5, 11, -6
Dowker-Thistlethwaite code 6 14 18 16 20 22 4 8 2 12 10
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a344 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for K11a344's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 129, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11a344/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a344/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a275,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (4, 9)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of K11a344. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-10123456789χ
23           1-1
21          3 3
19         61 -5
17        83  5
15       116   -5
13      108    2
11     1011     1
9    810      -2
7   410       6
5  38        -5
3 15         4
1 2          -2
-11           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a343.gif

K11a343

K11a345.gif

K11a345